intervalo f(x)=3x^2+6x
|
intervalo\:f(x)=3x^{2}+6x
|
domínio f(x)=(3x-9)/(x^2-6x+9)
|
domínio\:f(x)=\frac{3x-9}{x^{2}-6x+9}
|
intervalo sqrt(x^2-3x+2)
|
intervalo\:\sqrt{x^{2}-3x+2}
|
inversa f(x)=x^2-4x-5
|
inversa\:f(x)=x^{2}-4x-5
|
extreme points f(x)=(x^3)/(x+2)
|
extreme\:points\:f(x)=\frac{x^{3}}{x+2}
|
domínio f(x)=(8x^2)/(x^4+16)
|
domínio\:f(x)=\frac{8x^{2}}{x^{4}+16}
|
intervalo f(x)=(x-2)^2
|
intervalo\:f(x)=(x-2)^{2}
|
domínio (3x)/(x+7(x-2))
|
domínio\:\frac{3x}{x+7(x-2)}
|
domínio f(x)=(3-x^2)/(x^2+2x-15)
|
domínio\:f(x)=\frac{3-x^{2}}{x^{2}+2x-15}
|
monotone intervals f(x)=2^x
|
monotone\:intervals\:f(x)=2^{x}
|
inversa f(x)=-5x-7
|
inversa\:f(x)=-5x-7
|
reta (1,-2)(3,-1)
|
reta\:(1,-2)(3,-1)
|
inversa f(x)= 3/5 x-12
|
inversa\:f(x)=\frac{3}{5}x-12
|
assíntotas f(x)=(2x^2-2x-1)/(5x^2)
|
assíntotas\:f(x)=\frac{2x^{2}-2x-1}{5x^{2}}
|
assíntotas f(x)=(x^2-6x+8)/(x-3)
|
assíntotas\:f(x)=\frac{x^{2}-6x+8}{x-3}
|
inversa f(x)=ln(x+8)
|
inversa\:f(x)=\ln(x+8)
|
domínio (4x-2)/(x-1)
|
domínio\:\frac{4x-2}{x-1}
|
inversa f(x)=(x+3)/(2x-4)
|
inversa\:f(x)=\frac{x+3}{2x-4}
|
inversa f(x)=14-x^2
|
inversa\:f(x)=14-x^{2}
|
reta (2,3)(4,7)
|
reta\:(2,3)(4,7)
|
inversa (-2x-9)/(-5x+6)
|
inversa\:\frac{-2x-9}{-5x+6}
|
inflection points x^4-4x^3+7
|
inflection\:points\:x^{4}-4x^{3}+7
|
inversa f(x)=9-x^2,x>= 0
|
inversa\:f(x)=9-x^{2},x\ge\:0
|
domínio (2x^2+16x-18)/(x^2+x-6)
|
domínio\:\frac{2x^{2}+16x-18}{x^{2}+x-6}
|
inversa f(x)= 2/(x-2)
|
inversa\:f(x)=\frac{2}{x-2}
|
simetria 9x^2+4y^2=1
|
simetria\:9x^{2}+4y^{2}=1
|
interceptos f(x)=x^2+x+2
|
interceptos\:f(x)=x^{2}+x+2
|
critical points f(x)=2x-3x^{2/3}
|
critical\:points\:f(x)=2x-3x^{\frac{2}{3}}
|
critical points ((4x+9))/(6x+3)
|
critical\:points\:\frac{(4x+9)}{6x+3}
|
inversa f(x)=1+sqrt(3+4x)
|
inversa\:f(x)=1+\sqrt{3+4x}
|
paralela x+2y=16
|
paralela\:x+2y=16
|
reta m=2,\at (7,-9)
|
reta\:m=2,\at\:(7,-9)
|
intervalo xe^x
|
intervalo\:xe^{x}
|
translação 3cos(x-(pi)/4)-1
|
translação\:3\cos(x-\frac{\pi}{4})-1
|
inversa f(t)=10e^{0.1t}
|
inversa\:f(t)=10e^{0.1t}
|
assíntotas f(x)=3cot((pi)/7 x)
|
assíntotas\:f(x)=3\cot(\frac{\pi}{7}x)
|
intervalo f(x)=(x^2)/(1-x)
|
intervalo\:f(x)=\frac{x^{2}}{1-x}
|
assíntotas f(x)=(x^2+2x-15)/(x^2-4)
|
assíntotas\:f(x)=\frac{x^{2}+2x-15}{x^{2}-4}
|
paridade x^2-x-1
|
paridade\:x^{2}-x-1
|
inclinação (-2,1)-1/2
|
inclinação\:(-2,1)-1/2
|
interceptos f(x)=(2x^2+10x)/(3x+15)
|
interceptos\:f(x)=\frac{2x^{2}+10x}{3x+15}
|
domínio g(x)= x/(x^2-9)
|
domínio\:g(x)=\frac{x}{x^{2}-9}
|
extreme points f(x)=7+8x-x^3
|
extreme\:points\:f(x)=7+8x-x^{3}
|
inversa f(x)=sqrt(9-x)+5
|
inversa\:f(x)=\sqrt{9-x}+5
|
inversa f(x)=4(x-5)^3
|
inversa\:f(x)=4(x-5)^{3}
|
inflection points f(x)=x^4-50x^2+4
|
inflection\:points\:f(x)=x^{4}-50x^{2}+4
|
monotone intervals-1/3 (x-11)^2+27
|
monotone\:intervals\:-\frac{1}{3}(x-11)^{2}+27
|
domínio (x^2-1)/(x-1)
|
domínio\:\frac{x^{2}-1}{x-1}
|
inversa f(x)=(x-6)/(x+6)
|
inversa\:f(x)=\frac{x-6}{x+6}
|
inversa f(x)=5sqrt(x)+1
|
inversa\:f(x)=5\sqrt{x}+1
|
f(x)= x/(x-1)
|
f(x)=\frac{x}{x-1}
|
inflection points f(x)=e^xsqrt(x)
|
inflection\:points\:f(x)=e^{x}\sqrt{x}
|
paridade f(x)=-4x^2-x^3
|
paridade\:f(x)=-4x^{2}-x^{3}
|
critical points f(x)=2x-4
|
critical\:points\:f(x)=2x-4
|
domínio f(x)=ln(e^x-4)
|
domínio\:f(x)=\ln(e^{x}-4)
|
inversa ln(1/2)
|
inversa\:\ln(\frac{1}{2})
|
inversa f(x)=sqrt(x+4)
|
inversa\:f(x)=\sqrt{x+4}
|
inversa f(x)=2x^2-x
|
inversa\:f(x)=2x^{2}-x
|
reta (2,1),(8,7)
|
reta\:(2,1),(8,7)
|
reta (4,(3/2)),(7,(3/5))
|
reta\:(4,(\frac{3}{2})),(7,(\frac{3}{5}))
|
assíntotas f(x)=tan((pi)/2 x)
|
assíntotas\:f(x)=\tan(\frac{\pi}{2}x)
|
distância (7,-1)(3,8)
|
distância\:(7,-1)(3,8)
|
inclinação y+x=5
|
inclinação\:y+x=5
|
domínio f(x)= 5/(x+1)
|
domínio\:f(x)=\frac{5}{x+1}
|
reta (12,10)(14,-1.5)
|
reta\:(12,10)(14,-1.5)
|
distância (-1/3 ,2)(5/3 ,-2/3)
|
distância\:(-\frac{1}{3},2)(\frac{5}{3},-\frac{2}{3})
|
assíntotas f(x)=((x-1)^2)/(x+1)
|
assíntotas\:f(x)=\frac{(x-1)^{2}}{x+1}
|
inversa f(x)=2.5n+17
|
inversa\:f(x)=2.5n+17
|
inversa f(x)=\sqrt[3]{x}+5
|
inversa\:f(x)=\sqrt[3]{x}+5
|
inversa f(x)=(2x-4)/(x+3)
|
inversa\:f(x)=\frac{2x-4}{x+3}
|
assíntotas f(x)=(1-sqrt(x))/(sqrt(x))
|
assíntotas\:f(x)=\frac{1-\sqrt{x}}{\sqrt{x}}
|
intervalo f(x)=x^2-4x-3
|
intervalo\:f(x)=x^{2}-4x-3
|
inversa f(x)=1+x
|
inversa\:f(x)=1+x
|
assíntotas y=((2x+2))/(3x+1)
|
assíntotas\:y=\frac{(2x+2)}{3x+1}
|
extreme points f(x)=x^3+x^2-5x-2
|
extreme\:points\:f(x)=x^{3}+x^{2}-5x-2
|
inversa f(x)= 3/(4x)-5
|
inversa\:f(x)=\frac{3}{4x}-5
|
intervalo f(x)=2-x^2,-4<= x<= 4
|
intervalo\:f(x)=2-x^{2},-4\le\:x\le\:4
|
inversa f(x)=-1/4
|
inversa\:f(x)=-\frac{1}{4}
|
inversa f(x)=(8x)/(9x-1)
|
inversa\:f(x)=\frac{8x}{9x-1}
|
simetria y=-(x^3)/(x^2-4)
|
simetria\:y=-\frac{x^{3}}{x^{2}-4}
|
simetria y=-2(x-3)^2+4
|
simetria\:y=-2(x-3)^{2}+4
|
inversa =4x-2
|
inversa\:=4x-2
|
inversa f(x)= 1/(x-5)
|
inversa\:f(x)=\frac{1}{x-5}
|
paridade x-1
|
paridade\:x-1
|
inversa f(x)= x/5-4
|
inversa\:f(x)=\frac{x}{5}-4
|
domínio f(x)=sqrt(-x-x^3)
|
domínio\:f(x)=\sqrt{-x-x^{3}}
|
inversa f(x)=k(2+x)
|
inversa\:f(x)=k(2+x)
|
domínio f(x)=(2x^2-8x)/(x^2-7x+12)
|
domínio\:f(x)=\frac{2x^{2}-8x}{x^{2}-7x+12}
|
domínio f(t)=sqrt(7-3x)
|
domínio\:f(t)=\sqrt{7-3x}
|
domínio f(x)=sqrt((x^2-25)/(x^2+4x+4))
|
domínio\:f(x)=\sqrt{\frac{x^{2}-25}{x^{2}+4x+4}}
|
inversa f(x)=4-x
|
inversa\:f(x)=4-x
|
domínio f(x)= 1/(4-x^2)
|
domínio\:f(x)=\frac{1}{4-x^{2}}
|
inversa f(x)=x^{3/7}
|
inversa\:f(x)=x^{\frac{3}{7}}
|
domínio (x-3)/(x-7)+sqrt(x+8)
|
domínio\:\frac{x-3}{x-7}+\sqrt{x+8}
|
reta (-8,7),(-8,-2)
|
reta\:(-8,7),(-8,-2)
|
domínio f(x)=sqrt(\sqrt{x)-1}
|
domínio\:f(x)=\sqrt{\sqrt{x}-1}
|
intervalo sqrt(x^2-3x-10)
|
intervalo\:\sqrt{x^{2}-3x-10}
|
assíntotas f(x)=((x^2+1))/(x^3+2)
|
assíntotas\:f(x)=\frac{(x^{2}+1)}{x^{3}+2}
|
domínio 12-4x
|
domínio\:12-4x
|
interceptos f(x)=2sqrt(x+9)-4
|
interceptos\:f(x)=2\sqrt{x+9}-4
|