interceptos f(x)=3x-y=6
|
interceptos\:f(x)=3x-y=6
|
intervalo x^3-7
|
intervalo\:x^{3}-7
|
inversa f(x)=((x+3))/(2-5x)
|
inversa\:f(x)=\frac{(x+3)}{2-5x}
|
domínio f(x)=(3-x)/(x^2-5x)
|
domínio\:f(x)=\frac{3-x}{x^{2}-5x}
|
domínio f(x)=(1-2t)/((t+6))
|
domínio\:f(x)=\frac{1-2t}{(t+6)}
|
inclinação intercept 6x-4y=12
|
inclinação\:intercept\:6x-4y=12
|
critical points pi
|
critical\:points\:\pi
|
intervalo f(x)=sqrt(x)-3
|
intervalo\:f(x)=\sqrt{x}-3
|
inversa f(x)=x^2-6x+13
|
inversa\:f(x)=x^{2}-6x+13
|
intervalo f(x)=sqrt((-x^2-4x-4))
|
intervalo\:f(x)=\sqrt{(-x^{2}-4x-4)}
|
punto médio (-6,11),(6,-3)
|
punto\:médio\:(-6,11),(6,-3)
|
assíntotas y=2*3^x-3
|
assíntotas\:y=2\cdot\:3^{x}-3
|
inversa y=3x-2
|
inversa\:y=3x-2
|
reta ar
|
reta\:ar
|
domínio f(x)=sqrt(x^3)-9x
|
domínio\:f(x)=\sqrt{x^{3}}-9x
|
domínio f(x)=sqrt(x-3)-sqrt(x+3)
|
domínio\:f(x)=\sqrt{x-3}-\sqrt{x+3}
|
paridade f(x)=x^5tan(x)
|
paridade\:f(x)=x^{5}\tan(x)
|
inclinação intercept 2y-2x=8
|
inclinação\:intercept\:2y-2x=8
|
interceptos (x^3+8)/(x^2+4)
|
interceptos\:\frac{x^{3}+8}{x^{2}+4}
|
perpendicular y= 2/10 x+8/10 ,\at (1,1)
|
perpendicular\:y=\frac{2}{10}x+\frac{8}{10},\at\:(1,1)
|
paridade f(x)=x^{1/3}
|
paridade\:f(x)=x^{\frac{1}{3}}
|
domínio f(x)=sqrt(8x+7)
|
domínio\:f(x)=\sqrt{8x+7}
|
assíntotas (4x^2+11x-3)/(3x^2-x-10)
|
assíntotas\:\frac{4x^{2}+11x-3}{3x^{2}-x-10}
|
assíntotas f(x)=(6x)/(x-5)
|
assíntotas\:f(x)=\frac{6x}{x-5}
|
inversa x^3-3
|
inversa\:x^{3}-3
|
critical points f(x)=xsqrt(4-x^2)
|
critical\:points\:f(x)=x\sqrt{4-x^{2}}
|
inversa f(x)=4pi*r^2
|
inversa\:f(x)=4\pi\cdot\:r^{2}
|
interceptos x^2-10x+16
|
interceptos\:x^{2}-10x+16
|
paridade f(x)=x^2-|x|
|
paridade\:f(x)=x^{2}-|x|
|
intervalo 2x^2+15x+7
|
intervalo\:2x^{2}+15x+7
|
inversa f(x)=-8x+9
|
inversa\:f(x)=-8x+9
|
domínio 3x^2-8
|
domínio\:3x^{2}-8
|
domínio f(x)= 7/x+9/(x+9)
|
domínio\:f(x)=\frac{7}{x}+\frac{9}{x+9}
|
inversa =1+sqrt(5+6x)
|
inversa\:=1+\sqrt{5+6x}
|
intervalo f(x)=|x^2-4|+3
|
intervalo\:f(x)=|x^{2}-4|+3
|
domínio (sqrt(x+6))/(x-9)
|
domínio\:\frac{\sqrt{x+6}}{x-9}
|
frequência 15sin(5000pi t)
|
frequência\:15\sin(5000\pi\:t)
|
domínio f(x)=(x^2+2x-3)/(x^2-1)
|
domínio\:f(x)=\frac{x^{2}+2x-3}{x^{2}-1}
|
inversa z
|
inversa\:z
|
paridade f(x)=-x^4-1
|
paridade\:f(x)=-x^{4}-1
|
inversa f(x)=((x^2-5))/(7x^2)
|
inversa\:f(x)=\frac{(x^{2}-5)}{7x^{2}}
|
critical points f(x)=2*x^2
|
critical\:points\:f(x)=2\cdot\:x^{2}
|
paridade f(x)=sqrt(4/(x^4)-x^2)
|
paridade\:f(x)=\sqrt{\frac{4}{x^{4}}-x^{2}}
|
assíntotas f(x)=3x/(x^2-4)
|
assíntotas\:f(x)=3x/(x^{2}-4)
|
domínio f(x)=((\frac{x+1)/(x+2))+1}{((x+1)/(x+2))+2}
|
domínio\:f(x)=\frac{(\frac{x+1}{x+2})+1}{(\frac{x+1}{x+2})+2}
|
inversa f(x)=2-6x^2,x< 0
|
inversa\:f(x)=2-6x^{2},x\lt\:0
|
domínio (5x+4)/(4x-2)
|
domínio\:\frac{5x+4}{4x-2}
|
domínio y= 2/(x-1)
|
domínio\:y=\frac{2}{x-1}
|
inversa f(x)=-(2/(3x))+6
|
inversa\:f(x)=-(\frac{2}{3x})+6
|
domínio f(x)=x^2+9,x>=-5
|
domínio\:f(x)=x^{2}+9,x\ge\:-5
|
inversa f(x)=2(x-5)
|
inversa\:f(x)=2(x-5)
|
inclinação intercept y=3x
|
inclinação\:intercept\:y=3x
|
domínio y=6-sqrt(x+36),x<= 6
|
domínio\:y=6-\sqrt{x+36},x\le\:6
|
inversa (s)
|
inversa\:(s)
|
domínio f(x)=4sin(2)(x-(pi)/3)+1
|
domínio\:f(x)=4\sin(2)(x-\frac{\pi}{3})+1
|
inversa f(x)=4x+6
|
inversa\:f(x)=4x+6
|
reta (-4,5),(2,-2)
|
reta\:(-4,5),(2,-2)
|
assíntotas f(x)=(400+8x)/x
|
assíntotas\:f(x)=\frac{400+8x}{x}
|
interceptos f(x)=-3x-4=-5y-8
|
interceptos\:f(x)=-3x-4=-5y-8
|
assíntotas y=5*(1/4)^x
|
assíntotas\:y=5\cdot\:(\frac{1}{4})^{x}
|
critical points f(x)=(x+7)^8
|
critical\:points\:f(x)=(x+7)^{8}
|
interceptos f(x)=(x-5)^2-4
|
interceptos\:f(x)=(x-5)^{2}-4
|
interceptos y> x^2-8,x+y<= 1
|
interceptos\:y\gt\:x^{2}-8,x+y\le\:1
|
assíntotas f(x)=((8x^2-10x-1))/(2x-3)
|
assíntotas\:f(x)=\frac{(8x^{2}-10x-1)}{2x-3}
|
domínio f(x)= 1/(3+e^{2x)}
|
domínio\:f(x)=\frac{1}{3+e^{2x}}
|
simetria (x^5-x)/(x^2+1)
|
simetria\:\frac{x^{5}-x}{x^{2}+1}
|
inversa f(x)=x^2-9,x<= 0
|
inversa\:f(x)=x^{2}-9,x\le\:0
|
punto médio (-6,3)(2,-4)
|
punto\:médio\:(-6,3)(2,-4)
|
domínio f(x)=x^2-15
|
domínio\:f(x)=x^{2}-15
|
domínio f(x)=\sqrt[3]{x+4}
|
domínio\:f(x)=\sqrt[3]{x+4}
|
inclinação y= 2/3 x+1
|
inclinação\:y=\frac{2}{3}x+1
|
extreme points f(x)=(x^4)/2+3x^2-2x
|
extreme\:points\:f(x)=\frac{x^{4}}{2}+3x^{2}-2x
|
domínio f(x)= 1/(sqrt(x^2-5x))
|
domínio\:f(x)=\frac{1}{\sqrt{x^{2}-5x}}
|
distância (6,-2)(2,1)
|
distância\:(6,-2)(2,1)
|
inversa 1/(1-cos(theta))
|
inversa\:\frac{1}{1-\cos(\theta)}
|
interceptos 7^x+9
|
interceptos\:7^{x}+9
|
reta (-4,-4)(-2,-6)
|
reta\:(-4,-4)(-2,-6)
|
inclinação 2x-3y=18
|
inclinação\:2x-3y=18
|
punto médio (7,0)(-1,4)
|
punto\:médio\:(7,0)(-1,4)
|
domínio f(x)=sqrt(4x-44)
|
domínio\:f(x)=\sqrt{4x-44}
|
critical points 1/3 x^3+2x^2+3x+3
|
critical\:points\:\frac{1}{3}x^{3}+2x^{2}+3x+3
|
interceptos ((x^2)/4-x/2-1/4)^2
|
interceptos\:(\frac{x^{2}}{4}-\frac{x}{2}-\frac{1}{4})^{2}
|
domínio y=(x^3)/(x^2-7)
|
domínio\:y=\frac{x^{3}}{x^{2}-7}
|
domínio f(x)=(x-1)/(x^2-2x-15)
|
domínio\:f(x)=\frac{x-1}{x^{2}-2x-15}
|
domínio f(x)= 5/(x-2)
|
domínio\:f(x)=\frac{5}{x-2}
|
inclinação x=0
|
inclinação\:x=0
|
domínio (6x+7)/(x+6)
|
domínio\:\frac{6x+7}{x+6}
|
inversa f(x)=2+sqrt(x+3)
|
inversa\:f(x)=2+\sqrt{x+3}
|
intervalo f(x)=4
|
intervalo\:f(x)=4
|
domínio f(x)=7-x
|
domínio\:f(x)=7-x
|
interceptos f(x)= 1/(x+2)
|
interceptos\:f(x)=\frac{1}{x+2}
|
critical points (2sqrt(x^2)-x^2-x)/(x+1)
|
critical\:points\:\frac{2\sqrt{x^{2}}-x^{2}-x}{x+1}
|
punto médio (-2,6)(7,0)
|
punto\:médio\:(-2,6)(7,0)
|
assíntotas f(x)=(x^3-3x^2-4x)/(-4x^2+4x)
|
assíntotas\:f(x)=\frac{x^{3}-3x^{2}-4x}{-4x^{2}+4x}
|
domínio f(x)= 3/(sqrt(2+x))
|
domínio\:f(x)=\frac{3}{\sqrt{2+x}}
|
domínio 1/(x+4)+3
|
domínio\:\frac{1}{x+4}+3
|
intervalo (-4)/(3x-2)+1
|
intervalo\:\frac{-4}{3x-2}+1
|
inversa h(x)=x+sqrt(x)
|
inversa\:h(x)=x+\sqrt{x}
|
critical points f(x)=log_{5}(e^x-x)
|
critical\:points\:f(x)=\log_{5}(e^{x}-x)
|
assíntotas g(x)=-3ln(x-2)
|
assíntotas\:g(x)=-3\ln(x-2)
|