extreme points f(x)=-x^3+5x^2+8x-3
|
extreme\:points\:f(x)=-x^{3}+5x^{2}+8x-3
|
paridade f(x)=3^x-5
|
paridade\:f(x)=3^{x}-5
|
intervalo 3x-8
|
intervalo\:3x-8
|
critical points cos(3x)
|
critical\:points\:\cos(3x)
|
reta y-70.75=0.11(x-250)
|
reta\:y-70.75=0.11(x-250)
|
assíntotas f(x)=(x^2-4)/(x^2-3x+2)
|
assíntotas\:f(x)=\frac{x^{2}-4}{x^{2}-3x+2}
|
punto médio (5,2)(-6,-3)
|
punto\:médio\:(5,2)(-6,-3)
|
extreme points f(x)=(x+5)^{4/5}
|
extreme\:points\:f(x)=(x+5)^{\frac{4}{5}}
|
interceptos-1/5 3^x-2
|
interceptos\:-\frac{1}{5}3^{x}-2
|
assíntotas f(x)=(10x^2)/(5x^2+2)
|
assíntotas\:f(x)=\frac{10x^{2}}{5x^{2}+2}
|
inversa f(x)= 2/(3-x)
|
inversa\:f(x)=\frac{2}{3-x}
|
inversa f(x)=(x-8)^3
|
inversa\:f(x)=(x-8)^{3}
|
inversa f(x)= 5/3 x+10/3
|
inversa\:f(x)=\frac{5}{3}x+\frac{10}{3}
|
interceptos f(x)=x^3-10x^2+29x-20
|
interceptos\:f(x)=x^{3}-10x^{2}+29x-20
|
domínio f(x)=sqrt(2x-62)
|
domínio\:f(x)=\sqrt{2x-62}
|
paridade f(x)=x^2+2x-5
|
paridade\:f(x)=x^{2}+2x-5
|
interceptos f(x)=(2x+5)/(2x-16)
|
interceptos\:f(x)=\frac{2x+5}{2x-16}
|
critical points 3^x-2^x
|
critical\:points\:3^{x}-2^{x}
|
inversa x^2-8x+7
|
inversa\:x^{2}-8x+7
|
intervalo-x+4
|
intervalo\:-x+4
|
inversa f(x)=-9sqrt(x-8)+5
|
inversa\:f(x)=-9\sqrt{x-8}+5
|
f(x)=log_{1/2}(x)
|
f(x)=\log_{\frac{1}{2}}(x)
|
domínio f(x)=x^2-x+1
|
domínio\:f(x)=x^{2}-x+1
|
distância (-4,3),(2,-5)
|
distância\:(-4,3),(2,-5)
|
paralela y-3x=1
|
paralela\:y-3x=1
|
inclinação 1/(x-3),x=7
|
inclinação\:\frac{1}{x-3},x=7
|
domínio ((x/(x+4)))/((x^3))
|
domínio\:\frac{(\frac{x}{x+4})}{(x^{3})}
|
domínio-x+4
|
domínio\:-x+4
|
inversa f(x)= 1/3 x^2-9
|
inversa\:f(x)=\frac{1}{3}x^{2}-9
|
domínio y=(cos(x))/(2+sin(x))
|
domínio\:y=\frac{\cos(x)}{2+\sin(x)}
|
domínio f(x)= x/(2x^2-5)-sqrt(x)
|
domínio\:f(x)=\frac{x}{2x^{2}-5}-\sqrt{x}
|
inversa-3cos(5x)
|
inversa\:-3\cos(5x)
|
assíntotas (x^2+4x+7)/(x+3)
|
assíntotas\:\frac{x^{2}+4x+7}{x+3}
|
inversa f(x)=sqrt(7-x)+5
|
inversa\:f(x)=\sqrt{7-x}+5
|
inversa f(x)=-8x^2+4x>= 0
|
inversa\:f(x)=-8x^{2}+4x\ge\:0
|
reta y=2
|
reta\:y=2
|
paralela x+2y=6
|
paralela\:x+2y=6
|
inversa f(x)=(x-4)/(x+4)
|
inversa\:f(x)=\frac{x-4}{x+4}
|
critical points sqrt(x^2+7)
|
critical\:points\:\sqrt{x^{2}+7}
|
intervalo sqrt((4x+3)/(2x+5))
|
intervalo\:\sqrt{\frac{4x+3}{2x+5}}
|
intervalo f(x)= 1/(1-sqrt(x-2))
|
intervalo\:f(x)=\frac{1}{1-\sqrt{x-2}}
|
domínio f(x)=(x+9)/(x^2+10x+9)
|
domínio\:f(x)=\frac{x+9}{x^{2}+10x+9}
|
domínio sqrt(16-x^2)-sqrt(x+3)
|
domínio\:\sqrt{16-x^{2}}-\sqrt{x+3}
|
assíntotas f(x)=-3/(x^2-4)
|
assíntotas\:f(x)=-\frac{3}{x^{2}-4}
|
assíntotas (x^3-2x^2-3x)/(x-3)
|
assíntotas\:\frac{x^{3}-2x^{2}-3x}{x-3}
|
intervalo y=|x-3|
|
intervalo\:y=|x-3|
|
assíntotas f(x)=(3x-12)/(x^2-3x-4)
|
assíntotas\:f(x)=\frac{3x-12}{x^{2}-3x-4}
|
assíntotas 1/2 x^2+2
|
assíntotas\:\frac{1}{2}x^{2}+2
|
extreme points f(x)=x^3-3x^2+4
|
extreme\:points\:f(x)=x^{3}-3x^{2}+4
|
inclinação intercept y=2x+12
|
inclinação\:intercept\:y=2x+12
|
domínio f(x)=-3<= x<= 2
|
domínio\:f(x)=-3\le\:x\le\:2
|
inclinação 5x+2y=2
|
inclinação\:5x+2y=2
|
interceptos f(x)=x^3-3x+2
|
interceptos\:f(x)=x^{3}-3x+2
|
inversa 1-2/(x+3)
|
inversa\:1-\frac{2}{x+3}
|
punto médio (1,4)(-9,2)
|
punto\:médio\:(1,4)(-9,2)
|
domínio f(x)=sqrt(x-4)
|
domínio\:f(x)=\sqrt{x-4}
|
domínio f(x)=(2x)/((x+2)(x-3))
|
domínio\:f(x)=\frac{2x}{(x+2)(x-3)}
|
domínio f(x)= 6/(x^2-4)
|
domínio\:f(x)=\frac{6}{x^{2}-4}
|
domínio \sqrt[3]{x^3-4}
|
domínio\:\sqrt[3]{x^{3}-4}
|
inversa (x-3)/(2x+5)
|
inversa\:\frac{x-3}{2x+5}
|
reta y= 5/6 x-9/2
|
reta\:y=\frac{5}{6}x-\frac{9}{2}
|
monotone intervals f(x)=0.05x+15+(500)/x
|
monotone\:intervals\:f(x)=0.05x+15+\frac{500}{x}
|
domínio ln(x)+2
|
domínio\:\ln(x)+2
|
inversa \sqrt[3]{((x+3))/2}
|
inversa\:\sqrt[3]{\frac{(x+3)}{2}}
|
amplitude 2sin((2pitheta)/3)
|
amplitude\:2\sin(\frac{2\pi\theta}{3})
|
f(x)=x^2+2x
|
f(x)=x^{2}+2x
|
extreme points f(x)=-x^{2/3}(x-2)
|
extreme\:points\:f(x)=-x^{\frac{2}{3}}(x-2)
|
intervalo f(x)=sqrt(x-3)+4
|
intervalo\:f(x)=\sqrt{x-3}+4
|
inversa y=32^{x-4}
|
inversa\:y=32^{x-4}
|
inflection points f(x)=12x^2-16
|
inflection\:points\:f(x)=12x^{2}-16
|
domínio f(x)=(x^3)/(x^2+1)
|
domínio\:f(x)=\frac{x^{3}}{x^{2}+1}
|
punto médio (0,-1)(2,1)
|
punto\:médio\:(0,-1)(2,1)
|
interceptos y=2x+3
|
interceptos\:y=2x+3
|
assíntotas (x^2+7x+6)/(x-1)
|
assíntotas\:\frac{x^{2}+7x+6}{x-1}
|
domínio 4x-1
|
domínio\:4x-1
|
paridade f(x)=\sqrt[3]{5x}
|
paridade\:f(x)=\sqrt[3]{5x}
|
simetria y=-(x-4)^2-1
|
simetria\:y=-(x-4)^{2}-1
|
reta m=-8,\at (-4,9)
|
reta\:m=-8,\at\:(-4,9)
|
domínio sqrt((5-x)/x)
|
domínio\:\sqrt{\frac{5-x}{x}}
|
assíntotas f(x)= x/(x^3-x)
|
assíntotas\:f(x)=\frac{x}{x^{3}-x}
|
domínio f(x)=(sqrt(36-x^2))/(sqrt(x+1))
|
domínio\:f(x)=\frac{\sqrt{36-x^{2}}}{\sqrt{x+1}}
|
extreme points f(x)=4(x-8)^{2/3}+2
|
extreme\:points\:f(x)=4(x-8)^{\frac{2}{3}}+2
|
simetria f(x)=-1/2 (x+3)^2+2
|
simetria\:f(x)=-\frac{1}{2}(x+3)^{2}+2
|
inversa f(x)=((x+1))/((4x+1))
|
inversa\:f(x)=\frac{(x+1)}{(4x+1)}
|
critical points e^{-0.5x^2}
|
critical\:points\:e^{-0.5x^{2}}
|
inversa f(x)=4x^2+1
|
inversa\:f(x)=4x^{2}+1
|
inversa f(x)=(3x+4)/(5-4x)
|
inversa\:f(x)=\frac{3x+4}{5-4x}
|
perpendicular x-4=0
|
perpendicular\:x-4=0
|
f(x)=x^3-1
|
f(x)=x^{3}-1
|
distância (2,4)(6,8)
|
distância\:(2,4)(6,8)
|
inversa y=log_{2}(x)+5
|
inversa\:y=\log_{2}(x)+5
|
critical points f(x)=3x^2-3
|
critical\:points\:f(x)=3x^{2}-3
|
monotone intervals f(x)=x^4-8x+16
|
monotone\:intervals\:f(x)=x^{4}-8x+16
|
assíntotas ((x+1))/((x+2)(x-3))
|
assíntotas\:\frac{(x+1)}{(x+2)(x-3)}
|
inversa f(x)=(2x+1)/(3x)
|
inversa\:f(x)=\frac{2x+1}{3x}
|
perpendicular y=x,\at (6,1)
|
perpendicular\:y=x,\at\:(6,1)
|
inflection points f(x)=x^3+18x^2+12x-8
|
inflection\:points\:f(x)=x^{3}+18x^{2}+12x-8
|
interceptos f(x)=3y+2x=-x+5
|
interceptos\:f(x)=3y+2x=-x+5
|
assíntotas f(x)=((2x)/(x+2))
|
assíntotas\:f(x)=(\frac{2x}{x+2})
|
inflection points f(x)=((3x+32))/(2sqrt((x+16)))
|
inflection\:points\:f(x)=\frac{(3x+32)}{2\sqrt{(x+16)}}
|