domínio (x-8)^2
|
domínio\:(x-8)^{2}
|
simetria 3x
|
simetria\:3x
|
inflection points 13x(x-1)^3
|
inflection\:points\:13x(x-1)^{3}
|
inclinação-5/3 ,(5,1)
|
inclinação\:-\frac{5}{3},(5,1)
|
paralela y=-2x+1,\at (-7,-5)
|
paralela\:y=-2x+1,\at\:(-7,-5)
|
inclinação intercept y+3=7(x-2)
|
inclinação\:intercept\:y+3=7(x-2)
|
domínio f(x)= 1/(2x+1)
|
domínio\:f(x)=\frac{1}{2x+1}
|
inversa f(x)=4x-14
|
inversa\:f(x)=4x-14
|
inversa f(x)=e2x-9
|
inversa\:f(x)=e2x-9
|
inversa f(x)=2x^2+4
|
inversa\:f(x)=2x^{2}+4
|
domínio sqrt(x^2-16)
|
domínio\:\sqrt{x^{2}-16}
|
inversa f(x)= 1/(x+1)
|
inversa\:f(x)=\frac{1}{x+1}
|
assíntotas ln(x+6)
|
assíntotas\:\ln(x+6)
|
distância (-1,-6)(3,-6)
|
distância\:(-1,-6)(3,-6)
|
assíntotas f(x)=(2x)/(x-5)
|
assíntotas\:f(x)=\frac{2x}{x-5}
|
extreme points f(x)=(4x)/((x^2+16)^{3/2)}
|
extreme\:points\:f(x)=\frac{4x}{(x^{2}+16)^{\frac{3}{2}}}
|
extreme points f(x)=x^4e^x-3
|
extreme\:points\:f(x)=x^{4}e^{x}-3
|
critical points f(x)=x+4/x
|
critical\:points\:f(x)=x+\frac{4}{x}
|
y=3x+3
|
y=3x+3
|
domínio f(x)=sqrt(x^3-4x^2+3x)
|
domínio\:f(x)=\sqrt{x^{3}-4x^{2}+3x}
|
inversa f(x)=(ln(x))^5
|
inversa\:f(x)=(\ln(x))^{5}
|
distância (-1,12)(1,0)
|
distância\:(-1,12)(1,0)
|
translação 3cos(5x-9)
|
translação\:3\cos(5x-9)
|
interceptos x^2+5
|
interceptos\:x^{2}+5
|
periodicidade y=tan(2x)
|
periodicidade\:y=\tan(2x)
|
assíntotas f(x)=(x^2)/(x^2-4)
|
assíntotas\:f(x)=\frac{x^{2}}{x^{2}-4}
|
assíntotas f(x)=(5x)/(x^2-16)
|
assíntotas\:f(x)=\frac{5x}{x^{2}-16}
|
domínio (2x+1)/(x^2-1)
|
domínio\:\frac{2x+1}{x^{2}-1}
|
inversa f(x)=sqrt(2x-6)
|
inversa\:f(x)=\sqrt{2x-6}
|
inversa f(x)=log_{3}(x)
|
inversa\:f(x)=\log_{3}(x)
|
interceptos f(x)=(x+2)/(x-4)
|
interceptos\:f(x)=\frac{x+2}{x-4}
|
domínio f(x)= 1/(5+e^{3x)}
|
domínio\:f(x)=\frac{1}{5+e^{3x}}
|
intervalo f(x)=(e^{-x})/(x^2+1)
|
intervalo\:f(x)=\frac{e^{-x}}{x^{2}+1}
|
intervalo x^2+4x+7
|
intervalo\:x^{2}+4x+7
|
inversa 4x^4-37x^2+9
|
inversa\:4x^{4}-37x^{2}+9
|
reta y=4
|
reta\:y=4
|
inclinação y=x-4
|
inclinação\:y=x-4
|
assíntotas f(x)=-3csc(x)
|
assíntotas\:f(x)=-3\csc(x)
|
domínio f(x)=sqrt(x-7)+8
|
domínio\:f(x)=\sqrt{x-7}+8
|
inclinação intercept-7x-5y=-48
|
inclinação\:intercept\:-7x-5y=-48
|
inversa f(x)= 2/(x^3+1)
|
inversa\:f(x)=\frac{2}{x^{3}+1}
|
domínio f(x)=(x+2)/(x^2-4)
|
domínio\:f(x)=\frac{x+2}{x^{2}-4}
|
intervalo-x^2+2x-6
|
intervalo\:-x^{2}+2x-6
|
inclinação intercept y=-2/5 x+8
|
inclinação\:intercept\:y=-\frac{2}{5}x+8
|
periodicidade 3cot(2pi x)
|
periodicidade\:3\cot(2\pi\:x)
|
vértice f(x)=y=x^2-6x+7
|
vértice\:f(x)=y=x^{2}-6x+7
|
critical points (x^3)/(x^2-1)
|
critical\:points\:\frac{x^{3}}{x^{2}-1}
|
intervalo f(x)=|x-2|
|
intervalo\:f(x)=|x-2|
|
interceptos x^3-4x^2+8x-5
|
interceptos\:x^{3}-4x^{2}+8x-5
|
extreme points 6x^4+8x^3
|
extreme\:points\:6x^{4}+8x^{3}
|
inversa 1/(sqrt(x))
|
inversa\:\frac{1}{\sqrt{x}}
|
domínio f(x)=e^{sqrt(x^3-6x^2+8x)}
|
domínio\:f(x)=e^{\sqrt{x^{3}-6x^{2}+8x}}
|
punto médio (8,-4)(12,2)
|
punto\:médio\:(8,-4)(12,2)
|
assíntotas f(x)=3xy-2x-4y-3=0
|
assíntotas\:f(x)=3xy-2x-4y-3=0
|
intervalo cos^2(x)+2
|
intervalo\:\cos^{2}(x)+2
|
inflection points 2x^3-9x^2-24x+30
|
inflection\:points\:2x^{3}-9x^{2}-24x+30
|
inclinação-17/13
|
inclinação\:-\frac{17}{13}
|
interceptos 2x^2+4x-1
|
interceptos\:2x^{2}+4x-1
|
domínio f(x)= 5/((x+2)(x-1))
|
domínio\:f(x)=\frac{5}{(x+2)(x-1)}
|
assíntotas y=3^{x+2}-1
|
assíntotas\:y=3^{x+2}-1
|
inversa f(x)=100(1-x/(40))^2
|
inversa\:f(x)=100(1-\frac{x}{40})^{2}
|
inversa f(x)= 5/(x+3)
|
inversa\:f(x)=\frac{5}{x+3}
|
paridade f(x)=(33x)/(4x^5-3x-4)
|
paridade\:f(x)=\frac{33x}{4x^{5}-3x-4}
|
distância (-10,7),(2,5)
|
distância\:(-10,7),(2,5)
|
assíntotas f(x)= 3/(x-2)+9
|
assíntotas\:f(x)=\frac{3}{x-2}+9
|
translação 5cos(2x+(pi)/2)
|
translação\:5\cos(2x+\frac{\pi}{2})
|
inversa f(x)=sqrt(2-x/(x-2))
|
inversa\:f(x)=\sqrt{2-\frac{x}{x-2}}
|
domínio f(x)=(x-2)^2
|
domínio\:f(x)=(x-2)^{2}
|
inversa f(x)=(3x+4)/(x-1)
|
inversa\:f(x)=\frac{3x+4}{x-1}
|
extreme f(x)=x+1/x
|
extreme\:f(x)=x+\frac{1}{x}
|
domínio f(x)=(sqrt(4-x^2))/(sqrt(1-x^2))
|
domínio\:f(x)=\frac{\sqrt{4-x^{2}}}{\sqrt{1-x^{2}}}
|
assíntotas f(x)=(x^3+4x^2+3x)/(-4x^2-4x)
|
assíntotas\:f(x)=\frac{x^{3}+4x^{2}+3x}{-4x^{2}-4x}
|
domínio f(x)= 4/(x-6)
|
domínio\:f(x)=\frac{4}{x-6}
|
domínio f(x)=sqrt(2-\sqrt{54-3x-x^2)}
|
domínio\:f(x)=\sqrt{2-\sqrt{54-3x-x^{2}}}
|
punto médio (-1,6)(0,7)
|
punto\:médio\:(-1,6)(0,7)
|
punto médio (1,4)(-2,4)
|
punto\:médio\:(1,4)(-2,4)
|
domínio f(x)=sqrt(4x+8)
|
domínio\:f(x)=\sqrt{4x+8}
|
critical points f(x)=(x-3)^{2/3}
|
critical\:points\:f(x)=(x-3)^{\frac{2}{3}}
|
domínio 8x^2
|
domínio\:8x^{2}
|
inversa f(x)=(x+1)^3-2
|
inversa\:f(x)=(x+1)^{3}-2
|
inversa f(x)=7x-3
|
inversa\:f(x)=7x-3
|
perpendicular 2x-6y=-84
|
perpendicular\:2x-6y=-84
|
intervalo f(x)=(1/4)^x
|
intervalo\:f(x)=(\frac{1}{4})^{x}
|
domínio f(x)=(-5x+2)/(x^2+10)
|
domínio\:f(x)=\frac{-5x+2}{x^{2}+10}
|
domínio f(x)=(16)/(x^2)
|
domínio\:f(x)=\frac{16}{x^{2}}
|
domínio x^2+16x+64
|
domínio\:x^{2}+16x+64
|
inversa 6-8x^3
|
inversa\:6-8x^{3}
|
reta (-2,-4)(2,5)
|
reta\:(-2,-4)(2,5)
|
inversa f(x)=2ln(x-1)
|
inversa\:f(x)=2\ln(x-1)
|
paridade f(x)=x^2+10
|
paridade\:f(x)=x^{2}+10
|
assíntotas f(x)=(10)/(x+7)
|
assíntotas\:f(x)=\frac{10}{x+7}
|
interceptos (e^x)/x
|
interceptos\:\frac{e^{x}}{x}
|
domínio f(x)=x^2-6x
|
domínio\:f(x)=x^{2}-6x
|
inversa (-3)/(x+4)
|
inversa\:\frac{-3}{x+4}
|
domínio f(x)=12x-10
|
domínio\:f(x)=12x-10
|
domínio (sqrt(t-2))/(4t-24)
|
domínio\:\frac{\sqrt{t-2}}{4t-24}
|
domínio sqrt((7/x)+5)
|
domínio\:\sqrt{(7/x)+5}
|
inversa f(x)= 5/4 x+15
|
inversa\:f(x)=\frac{5}{4}x+15
|
domínio x/(x-1)
|
domínio\:\frac{x}{x-1}
|
domínio f(x)=sqrt(5-x)\div sqrt(x^2-9)
|
domínio\:f(x)=\sqrt{5-x}\div\:\sqrt{x^{2}-9}
|