f(x)=4x^2-4x-1
|
f(x)=4x^{2}-4x-1
|
f(x)=c
|
f(x)=c
|
f(x)=(3x)/(x-1)
|
f(x)=\frac{3x}{x-1}
|
r(θ)=sec(θ)tan(θ)
|
r(θ)=\sec(θ)\tan(θ)
|
f(y)=\sqrt[4]{y}
|
f(y)=\sqrt[4]{y}
|
y=e^{x-2}
|
y=e^{x-2}
|
f(x)=x^3-2x^2-19x+20
|
f(x)=x^{3}-2x^{2}-19x+20
|
f(x)=log_{3/2}(x)
|
f(x)=\log_{\frac{3}{2}}(x)
|
f(x)=(x-2)/(x+4)
|
f(x)=\frac{x-2}{x+4}
|
f(x)= 1/((1-x^2))
|
f(x)=\frac{1}{(1-x^{2})}
|
reta m=7,\at (0,6)
|
reta\:m=7,\at\:(0,6)
|
f(x)=|x^3-1|
|
f(x)=\left|x^{3}-1\right|
|
f(x)=(sqrt(3)cos(x)+sin(x))/2
|
f(x)=\frac{\sqrt{3}\cos(x)+\sin(x)}{2}
|
f(x)=4x^2-6x+3
|
f(x)=4x^{2}-6x+3
|
y=e^x+1
|
y=e^{x}+1
|
f(x)=(log_{3}(x))^2
|
f(x)=(\log_{3}(x))^{2}
|
y=2^{x-5}
|
y=2^{x-5}
|
f(x)=x^2-10x+20
|
f(x)=x^{2}-10x+20
|
f(x)=1+x+x^2+x^3+x^4
|
f(x)=1+x+x^{2}+x^{3}+x^{4}
|
P(y)=(1,5,-4)yQ(y)=(2,3,-1)
|
P(y)=(1,5,-4)yQ(y)=(2,3,-1)
|
f(x)=(sin(x))^{sin(x)}
|
f(x)=(\sin(x))^{\sin(x)}
|
assíntotas f(x)=(x^2-4)/(x^3+2x^2+x+2)
|
assíntotas\:f(x)=\frac{x^{2}-4}{x^{3}+2x^{2}+x+2}
|
f(x)=cos(x)sin^2(x)
|
f(x)=\cos(x)\sin^{2}(x)
|
f(x)=3x^2+x-5
|
f(x)=3x^{2}+x-5
|
f(x)=(x-1)^2-1
|
f(x)=(x-1)^{2}-1
|
f(x)=5^{x-3}
|
f(x)=5^{x-3}
|
f(x)=-(x-1)^2
|
f(x)=-(x-1)^{2}
|
f(x)=4x^2+2x-3
|
f(x)=4x^{2}+2x-3
|
f(x)=arcsin((2x)/(1+x^2))
|
f(x)=\arcsin(\frac{2x}{1+x^{2}})
|
y=2sec(sqrt(x))
|
y=2\sec(\sqrt{x})
|
f(x)= x/(10)
|
f(x)=\frac{x}{10}
|
f(x)=3x^2-x-2
|
f(x)=3x^{2}-x-2
|
reta (4,4)(1,6)
|
reta\:(4,4)(1,6)
|
f(x)=ln(sin(2x))
|
f(x)=\ln(\sin(2x))
|
f(x)=(x+3)/(x-4)
|
f(x)=\frac{x+3}{x-4}
|
f(θ)=cos^3(θ)
|
f(θ)=\cos^{3}(θ)
|
f(x)=x^4+4x^3-2
|
f(x)=x^{4}+4x^{3}-2
|
f(x)=x^2-4x+11
|
f(x)=x^{2}-4x+11
|
f(t)=t^2e^t
|
f(t)=t^{2}e^{t}
|
f(x)=x^3-2x^2+x+2
|
f(x)=x^{3}-2x^{2}+x+2
|
f(x)=xarcsin(x)+sqrt(1-x^2)
|
f(x)=x\arcsin(x)+\sqrt{1-x^{2}}
|
f(x)=x^3-x^2-8x+12
|
f(x)=x^{3}-x^{2}-8x+12
|
f(x)=sqrt(4-2x)
|
f(x)=\sqrt{4-2x}
|
translação f(x)=8cos(pi2x-pi4)-3
|
translação\:f(x)=8\cos(\pi2x-\pi4)-3
|
y=cos^2(3x)
|
y=\cos^{2}(3x)
|
f(x)=(x^2-4)/(x^2-5x+6)
|
f(x)=\frac{x^{2}-4}{x^{2}-5x+6}
|
f(x)=(1/3)^{-x}
|
f(x)=(\frac{1}{3})^{-x}
|
f(x)=|x-3|-1
|
f(x)=\left|x-3\right|-1
|
f(x)=(x^2-9)/x
|
f(x)=\frac{x^{2}-9}{x}
|
y= 4/5 x-3
|
y=\frac{4}{5}x-3
|
f(t)=-t^2
|
f(t)=-t^{2}
|
f(x)=2x^3+11x+4
|
f(x)=2x^{3}+11x+4
|
f(x)=(sin(x))/(sin(x)+cos(x))
|
f(x)=\frac{\sin(x)}{\sin(x)+\cos(x)}
|
f(x)=(x-3)/(x^2)
|
f(x)=\frac{x-3}{x^{2}}
|
inversa f(x)=500(0.04-x^2)
|
inversa\:f(x)=500(0.04-x^{2})
|
y=sin(ln(x))
|
y=\sin(\ln(x))
|
y=3sin(4x)
|
y=3\sin(4x)
|
f(x)=(x-5)^2+3
|
f(x)=(x-5)^{2}+3
|
f(x)=sqrt(2/x)
|
f(x)=\sqrt{\frac{2}{x}}
|
f(x)=4^0
|
f(x)=4^{0}
|
f(x)=sqrt(x^2-6)
|
f(x)=\sqrt{x^{2}-6}
|
f(t)=arctan(t)
|
f(t)=\arctan(t)
|
f(x)=sqrt(2+5x)
|
f(x)=\sqrt{2+5x}
|
y=-3/5 x-2
|
y=-\frac{3}{5}x-2
|
f(t)=cosh(5t)sin(2t)
|
f(t)=\cosh(5t)\sin(2t)
|
reta (4,9)(-4,7,)
|
reta\:(4,9)(-4,7,)
|
f(x)=3-sqrt(x)
|
f(x)=3-\sqrt{x}
|
f(x)= 3/2
|
f(x)=\frac{3}{2}
|
y=((4-x)^3)/((3+2x)^2)
|
y=\frac{(4-x)^{3}}{(3+2x)^{2}}
|
g(x)=3^x+2
|
g(x)=3^{x}+2
|
f(x)=-2x^2+x-1
|
f(x)=-2x^{2}+x-1
|
y=x^2sqrt(x+1)
|
y=x^{2}\sqrt{x+1}
|
f(x)=7x-125-6x^4+14x^2
|
f(x)=7x-125-6x^{4}+14x^{2}
|
f(x)=-x^2-x+2
|
f(x)=-x^{2}-x+2
|
f(x)=x^{3x}
|
f(x)=x^{3x}
|
y=ln(x/(x+1))
|
y=\ln(\frac{x}{x+1})
|
inclinação y-2=0
|
inclinação\:y-2=0
|
y= 4/3 x-3
|
y=\frac{4}{3}x-3
|
f(x)=8x+15
|
f(x)=8x+15
|
f(x)=x^3e^{x^2}
|
f(x)=x^{3}e^{x^{2}}
|
f(n)=n+4
|
f(n)=n+4
|
f(x)=(4x+18)/(-3x)
|
f(x)=\frac{4x+18}{-3x}
|
y=7e^{3x}+2x
|
y=7e^{3x}+2x
|
f(n)=1-n^3
|
f(n)=1-n^{3}
|
f(x)=sin(pi/4+x)
|
f(x)=\sin(\frac{π}{4}+x)
|
f(x)=x*e^{-x}
|
f(x)=x\cdot\:e^{-x}
|
f(x)=(x-1)(x+3)
|
f(x)=(x-1)(x+3)
|
inversa f(x)=(3x+2)/(2x+5)
|
inversa\:f(x)=\frac{3x+2}{2x+5}
|
y=sin(cos(x))
|
y=\sin(\cos(x))
|
f(x)=-12x
|
f(x)=-12x
|
f(-2)=4x+10
|
f(-2)=4x+10
|
y=2(x+3)^2-8
|
y=2(x+3)^{2}-8
|
y=(2x^2+2x+3)/(4x^2-4x)
|
y=\frac{2x^{2}+2x+3}{4x^{2}-4x}
|
f(x)=(x^4)/2
|
f(x)=\frac{x^{4}}{2}
|
y=x^3-3x^2-1
|
y=x^{3}-3x^{2}-1
|
f(x)= 1/(2x+4)
|
f(x)=\frac{1}{2x+4}
|
f(x)=2x^3-x+4
|
f(x)=2x^{3}-x+4
|
f(x)=(x+4/3)(x+1/2)
|
f(x)=(x+\frac{4}{3})(x+\frac{1}{2})
|
perpendicular 2x+5y=10
|
perpendicular\:2x+5y=10
|
inclinação 3x+2y=8
|
inclinação\:3x+2y=8
|