critical f(x)=12x^2-24x
|
critical\:f(x)=12x^{2}-24x
|
critical f(x)=x^3-9/2 x^2+6x
|
critical\:f(x)=x^{3}-\frac{9}{2}x^{2}+6x
|
critical f(x)=e^{x^2-4x}
|
critical\:f(x)=e^{x^{2}-4x}
|
critical f(x)=(x^2)/(x^2-49)
|
critical\:f(x)=\frac{x^{2}}{x^{2}-49}
|
critical y=sqrt(x)ln(5x)
|
critical\:y=\sqrt{x}\ln(5x)
|
interceptos y=2(x-b)^2
|
interceptos\:y=2(x-b)^{2}
|
critical x^2-x
|
critical\:x^{2}-x
|
critical-x^3+6x^2-12x+30
|
critical\:-x^{3}+6x^{2}-12x+30
|
critical f(x)=e^{-x}-e^{-2x}
|
critical\:f(x)=e^{-x}-e^{-2x}
|
critical x^2+2
|
critical\:x^{2}+2
|
critical f(x)=(x^3)/3+x^2-8x-3
|
critical\:f(x)=\frac{x^{3}}{3}+x^{2}-8x-3
|
critical f(x)=\sqrt[3]{x^2-x}
|
critical\:f(x)=\sqrt[3]{x^{2}-x}
|
critical f(x)=x^2-4x-1
|
critical\:f(x)=x^{2}-4x-1
|
critical f(x)=x^2-4x+6
|
critical\:f(x)=x^{2}-4x+6
|
critical f(x)=x^2e^{-2x}
|
critical\:f(x)=x^{2}e^{-2x}
|
critical 4x^3-9x^2+3x+1
|
critical\:4x^{3}-9x^{2}+3x+1
|
reta y=7x
|
reta\:y=7x
|
critical points y=x^2-5x
|
critical\:points\:y=x^{2}-5x
|
critical 2x^2+8xy+y^4
|
critical\:2x^{2}+8xy+y^{4}
|
critical f(x)=x^3-3x^2+y^3-3y
|
critical\:f(x)=x^{3}-3x^{2}+y^{3}-3y
|
critical f(x)=3sin^2(x)+2cos^2(x),0<= x<= 2pi
|
critical\:f(x)=3\sin^{2}(x)+2\cos^{2}(x),0\le\:x\le\:2π
|
critical x+4y+2/(xy)
|
critical\:x+4y+\frac{2}{xy}
|
critical 3x^4-2x^3+1
|
critical\:3x^{4}-2x^{3}+1
|
critical x^4+6x^3-5x^2+2x+3
|
critical\:x^{4}+6x^{3}-5x^{2}+2x+3
|
critical (sqrt(x-3))/(x-5)
|
critical\:\frac{\sqrt{x-3}}{x-5}
|
critical f(x)=(x^3)/3-81x
|
critical\:f(x)=\frac{x^{3}}{3}-81x
|
critical f(x)=(x^2-4)^3
|
critical\:f(x)=(x^{2}-4)^{3}
|
critical f(x)=(x+1)(x-4)^2
|
critical\:f(x)=(x+1)(x-4)^{2}
|
translação y=6cos(3x+(pi)/2)
|
translação\:y=6\cos(3x+\frac{\pi}{2})
|
critical f(x)=-x^2+7x-6
|
critical\:f(x)=-x^{2}+7x-6
|
critical 3x^2-6x+3
|
critical\:3x^{2}-6x+3
|
critical x^2-8x
|
critical\:x^{2}-8x
|
critical f(x)=x(x-3)^2
|
critical\:f(x)=x(x-3)^{2}
|
critical x^2-3x
|
critical\:x^{2}-3x
|
critical f(x)=16x^3-2x
|
critical\:f(x)=16x^{3}-2x
|
critical f(x)=11x^{11}-2x^2+17
|
critical\:f(x)=11x^{11}-2x^{2}+17
|
critical x^{4/5}(2x-9)
|
critical\:x^{\frac{4}{5}}(2x-9)
|
critical f(x)= 4/((1-4x^2)^2)
|
critical\:f(x)=\frac{4}{(1-4x^{2})^{2}}
|
critical f(x)=(((x-3)^3))/(x+5)
|
critical\:f(x)=\frac{((x-3)^{3})}{x+5}
|
domínio f(x)=(6x+7)/(2x-9)
|
domínio\:f(x)=\frac{6x+7}{2x-9}
|
critical f(x,y)=6xy-4x^3-3y^2
|
critical\:f(x,y)=6xy-4x^{3}-3y^{2}
|
critical (x+3)/(x+9)
|
critical\:\frac{x+3}{x+9}
|
critical f(x)=x^{3/5}(x-3)
|
critical\:f(x)=x^{\frac{3}{5}}(x-3)
|
critical x^2y+y^3-48y
|
critical\:x^{2}y+y^{3}-48y
|
critical g(x)=x-e^{3x}
|
critical\:g(x)=x-e^{3x}
|
critical y=2x^3+3x^2-12x
|
critical\:y=2x^{3}+3x^{2}-12x
|
f(x)= 2/x+2on[1.5]
|
f(x)=\frac{2}{x}+2on[1.5]
|
critical f(x)=2x^3-3x^2-36x+62
|
critical\:f(x)=2x^{3}-3x^{2}-36x+62
|
critical f(x)=(x-5)(\sqrt[3]{x^2})
|
critical\:f(x)=(x-5)(\sqrt[3]{x^{2}})
|
critical f(x,y)=xy+ln(x)+18y^2
|
critical\:f(x,y)=xy+\ln(x)+18y^{2}
|
perpendicular y=4x+1
|
perpendicular\:y=4x+1
|
critical f(x)=-3x^2-4x-2
|
critical\:f(x)=-3x^{2}-4x-2
|
critical f(x)=(6x^2)/(x^2-16)
|
critical\:f(x)=\frac{6x^{2}}{x^{2}-16}
|
critical f(x)=x^3-3xy^2+y^3
|
critical\:f(x)=x^{3}-3xy^{2}+y^{3}
|
critical f(x,y)=x^3+y^3-9xy
|
critical\:f(x,y)=x^{3}+y^{3}-9xy
|
critical f(x)=4x^3+12x^2
|
critical\:f(x)=4x^{3}+12x^{2}
|
critical (x^4)/4-x^3
|
critical\:\frac{x^{4}}{4}-x^{3}
|
critical f(x)=(x-4)(x-3)^2
|
critical\:f(x)=(x-4)(x-3)^{2}
|
critical sqrt(3)sin(y-pi)
|
critical\:\sqrt{3}\sin(y-π)
|
critical x^3-6x^2+15
|
critical\:x^{3}-6x^{2}+15
|
critical f(x)=2x(x-5)^3
|
critical\:f(x)=2x(x-5)^{3}
|
inversa f(x)=(4x+3)/(1-9x)
|
inversa\:f(x)=\frac{4x+3}{1-9x}
|
critical (x^2+4x+3)/(x^3-2x^2-5x+6)
|
critical\:\frac{x^{2}+4x+3}{x^{3}-2x^{2}-5x+6}
|
critical f(x)=(x-5)^2(x+6)
|
critical\:f(x)=(x-5)^{2}(x+6)
|
critical f(x)=3x^2-4x
|
critical\:f(x)=3x^{2}-4x
|
critical f(x)=3x^2-8x
|
critical\:f(x)=3x^{2}-8x
|
critical-x^3+4xy-2y^2+1
|
critical\:-x^{3}+4xy-2y^{2}+1
|
critical x/(3x-4ln(x))
|
critical\:\frac{x}{3x-4\ln(x)}
|
critical f(x)=5x^4-3x^3+3x^2-5x+7
|
critical\:f(x)=5x^{4}-3x^{3}+3x^{2}-5x+7
|
critical f(x)=xln(4x)
|
critical\:f(x)=x\ln(4x)
|
critical f(x,y)=2x^3+y^3+3x^2-3y-12x-4
|
critical\:f(x,y)=2x^{3}+y^{3}+3x^{2}-3y-12x-4
|
critical f(x)=x^3-6xy+y^3
|
critical\:f(x)=x^{3}-6xy+y^{3}
|
periodicidade f(x)=2tan(x/2)-1
|
periodicidade\:f(x)=2\tan(\frac{x}{2})-1
|
critical f(x,y)=4xy-y^4-2x^2
|
critical\:f(x,y)=4xy-y^{4}-2x^{2}
|
critical x^4+x^2-6xy+3y^2
|
critical\:x^{4}+x^{2}-6xy+3y^{2}
|
critical f(x,y)=2xy-1/2 (x^4+y^4)+1
|
critical\:f(x,y)=2xy-\frac{1}{2}(x^{4}+y^{4})+1
|
critical f(x)=(ln(x))/(x^7)
|
critical\:f(x)=\frac{\ln(x)}{x^{7}}
|
critical f(x)=-x^2+3,(-2<= x<= 3)
|
critical\:f(x)=-x^{2}+3,(-2\le\:x\le\:3)
|
critical f(x)=x^3-2/3 x^2
|
critical\:f(x)=x^{3}-\frac{2}{3}x^{2}
|
critical sin(5x)
|
critical\:\sin(5x)
|
critical f(x)=x^2+3xy+4y^2-6x+2y
|
critical\:f(x)=x^{2}+3xy+4y^{2}-6x+2y
|
critical f(x)=x^4+4x^3+4x^2
|
critical\:f(x)=x^{4}+4x^{3}+4x^{2}
|
critical (sqrt(4x^2+2))/(3x-1)
|
critical\:\frac{\sqrt{4x^{2}+2}}{3x-1}
|
domínio f(x)=sqrt(x^2-1)
|
domínio\:f(x)=\sqrt{x^{2}-1}
|
critical f(x)=x^4+8x^3+2x^2+5
|
critical\:f(x)=x^{4}+8x^{3}+2x^{2}+5
|
critical f(x)=-(3x)/(x^2+5)+2
|
critical\:f(x)=-\frac{3x}{x^{2}+5}+2
|
critical f(x)=(x^2)/(sqrt(x^2-1))
|
critical\:f(x)=\frac{x^{2}}{\sqrt{x^{2}-1}}
|
critical f(x)=(ln(x))/(x^6)
|
critical\:f(x)=\frac{\ln(x)}{x^{6}}
|
critical 3x^2-6x
|
critical\:3x^{2}-6x
|
critical f(x,y)=x^2-y-ln(xy)
|
critical\:f(x,y)=x^{2}-y-\ln(xy)
|
critical f(x)=(2x-1)/(x+2)
|
critical\:f(x)=\frac{2x-1}{x+2}
|
critical 3x^2y+y^3-3x^2-3y^2+2
|
critical\:3x^{2}y+y^{3}-3x^{2}-3y^{2}+2
|
critical (4x^2+1)/(x^2+x+16)
|
critical\:\frac{4x^{2}+1}{x^{2}+x+16}
|
critical f(x)=(x+7)/(x^2)
|
critical\:f(x)=\frac{x+7}{x^{2}}
|
inversa f(x)=-2(x+3)^2-1
|
inversa\:f(x)=-2(x+3)^{2}-1
|
f(x)=1-x^4-y^4
|
f(x)=1-x^{4}-y^{4}
|
critical y=(x-1)^2(x+2)
|
critical\:y=(x-1)^{2}(x+2)
|
critical log_{3}(27x)
|
critical\:\log_{3}(27x)
|
critical y=x^4-4x^2
|
critical\:y=x^{4}-4x^{2}
|
critical f(x)=14x^2-2x^3+2y^2+4xy
|
critical\:f(x)=14x^{2}-2x^{3}+2y^{2}+4xy
|