Atualize para o Profissional
Continuar para o site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Soluções
Calculadora de integrais (antiderivadas)
Calculadora de derivadas
Calculadora de álgebra
Calculadora de matrizes
Mais...
Gráficos
Gráfico de linha
Gráfico exponencial
Gráfico Quadrático
Gráfico senoidal
Mais...
Calculadoras
Calculadora de IMC
Calculadora de juros compostos
Calculadora de porcentagem
Calculadora de aceleração
Mais...
Geometria
Calculadora do Teorema de Pitágoras
Calculadora de área de círculo
Calculadora Triângulo Isósceles
Calculadora de Triângulos
Mais...
Ferramentas
Caderno
Grupos
Folhas de "cola"
Fichas de trabalho
Guias de estudo
Prática
Verifique a solução
pt
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Fazer upgrade
Problemas populares
Tópicos
Pre-Álgebra
Álgebra
Problemas de palavras
Functions & Graphing
Geometria
Trigonometria
Pré-cálculo
Cálculo
Estatística
Problemas de Cálculo populares
límite cuando x tiende a infinity de 5^x+1
lim
x
→
∞
(
5
x
+
1
)
área x^2,6-x
area
x
2
,
6
−
x
taylor 1/(1-x^3)
taylor
1
1
−
x
3
laplacetransformação e^{a*t}
laplacetransform
e
a
·
t
f(x)=sqrt(x)e^x
f
(
x
)
=
√
x
e
x
derivative f(x)=((x+1)/(x-3))^2
derivative
f
(
x
)
=
(
x
+
1
x
−
3
)
2
derivada de 2/(x^2+2)
d
dx
(
2
x
2
+
2
)
límite cuando x tiende a 0 de (x^5-2)/(x^4)
lim
x
→
0
(
x
5
−
2
x
4
)
derivative ((e^x))/(5x^2)
derivative
(
e
x
)
5
x
2
inversalaplace 1/(s(s+1)(s+5))
inverselaplace
1
s
(
s
+
1
)
(
s
+
5
)
laplacetransformação-3(t-1)
laplacetransform
−
3
(
t
−
1
)
y^'=sqrt(-4y+57)
y
′
=
√
−
4
y
+
5
7
e^xdx-ydy=0,y(0)=1
e
x
dx
−
ydy
=
0
,
y
(
0
)
=
1
integral de 1 a sqrt(3 de) 4/(x^2+1)
∫
1
√
3
4
x
2
+
1
dx
integral de-2 a 2 de 4(4-x^2)
∫
−
2
2
4
(
4
−
x
2
)
dx
(d^2)/(dx^2)(x/(x^2-9))
d
2
dx
2
(
x
x
2
−
9
)
integral de sec^2(7/3 x+4)
∫
sec
2
(
7
3
x
+
4
)
dx
integral de (2x-e^x)
∫
(
2
x
−
e
x
)
dx
límite cuando x tiende a 0 de (sin(10x))/(11x)
lim
x
→
0
(
sin
(
1
0
x
)
1
1
x
)
(\partial)/(\partial y)(3xy+y^2)
∂
∂
y
(
3
xy
+
y
2
)
derivative y=e^x+x^2
derivative
y
=
e
x
+
x
2
integral de (5e^x)/(e^{2x)+2e^x+1}
∫
5
e
x
e
2
x
+
2
e
x
+
1
dx
inclinação (-4,0),(1,-5)
slope
(
−
4
,
0
)
,
(
1
,
−
5
)
derivada de sqrt(x^2+2y^2-4)
d
dx
(
√
x
2
+
2
y
2
−
4
)
(y-x)dx+4xdy=0
(
y
−
x
)
dx
+
4
xdy
=
0
integral de 1/(sqrt(2x-1))
∫
1
√
2
x
−
1
dx
paridade ln|sin(x)|
parity
ln
|
sin
(
x
)
|
integral de x^4(2x^5-5)^4
∫
x
4
(
2
x
5
−
5
)
4
dx
derivada de x/(sqrt(x^2-1))
d
dx
(
x
√
x
2
−
1
)
integral de ln(2/x)
∫
ln
(
2
x
)
dx
derivative ((2x^3+4x^2-2x+3))/((x-3))
derivative
(
2
x
3
+
4
x
2
−
2
x
+
3
)
(
x
−
3
)
derivative f(x)=4x(x^2-9)
derivative
f
(
x
)
=
4
x
(
x
2
−
9
)
integral de sqrt(x)+3
∫
√
x
+
3
dx
(\partial)/(\partial x)(e^xy+5xy^2-x^2)
∂
∂
x
(
e
x
y
+
5
xy
2
−
x
2
)
serie de n=0 a infinity de 3/(n^4)
∑
n
=
0
∞
3
n
4
derivada de xcos(x-sin(x))
d
dx
(
x
cos
(
x
)
−
sin
(
x
)
)
integral de sin(t)cos(nt)
∫
sin
(
t
)
cos
(
nt
)
dt
y^{''}-3y^'=e^{3t}
y
′
′
−
3
y
′
=
e
3
t
serie de k=1 a infinity de (5+(-2)^k)/(4^{k+1)}
∑
k
=
1
∞
5
+
(
−
2
)
k
4
k
+
1
integral de (sin^7(12x))/(cos^4(12x))
∫
sin
7
(
1
2
x
)
cos
4
(
1
2
x
)
dx
tangent f(x)=ln((7(x+3))/x)
tangent
f
(
x
)
=
ln
(
7
(
x
+
3
)
x
)
integral de x^2e^{-x/3}
∫
x
2
e
−
x
3
dx
integral de 1 a 5 de 1/(sqrt(4x+5))
∫
1
5
1
√
4
x
+
5
dx
y^{''}-2y=0
y
′
′
−
2
y
=
0
límite cuando x tiende a-4 de 5x+1
lim
x
→
−
4
(
5
x
+
1
)
derivada de arctan(sqrt(x^2-1))
d
dx
(
arctan
(
√
x
2
−
1
)
)
derivative-(6x)/y
derivative
−
6
x
y
límite cuando t tiende a 0 de t/(tan(3t))
lim
t
→
0
(
t
tan
(
3
t
)
)
derivada de arcsin(x/6)
d
dx
(
arcsin
(
x
6
)
)
derivada de e^{sqrt(xy)}
d
dx
(
e
√
xy
)
d/(dθ)(csc(θ)cot(θ))
d
d
θ
(
csc
(
θ
)
cot
(
θ
)
)
derivada de csc(x-cot(x))
d
dx
(
csc
(
x
)
−
cot
(
x
)
)
integral de (18x+4)(9x^2+4x)^5
∫
(
1
8
x
+
4
)
(
9
x
2
+
4
x
)
5
dx
(\partial)/(\partial x)(-4y^5sin(4x))
∂
∂
x
(
−
4
y
5
sin
(
4
x
)
)
(\partial)/(\partial x)(7x^5y^7+3x^8y^6)
∂
∂
x
(
7
x
5
y
7
+
3
x
8
y
6
)
tangent f(x)=4(x-1/x)^4,\at x=2
tangent
f
(
x
)
=
4
(
x
−
1
x
)
4
,
at
x
=
2
serie de n=1 a infinity de 1/(6n)
∑
n
=
1
∞
1
6
n
tangent \sqrt[4]{x}-x
tangent
4
√
x
−
x
inversalaplace 2/((s^2+2)(s^2+1))
inverselaplace
2
(
s
2
+
2
)
(
s
2
+
1
)
(\partial)/(\partial z)(xz+yz)
∂
∂
z
(
xz
+
yz
)
derivative f(x)=(x(x^5+9)^3)
derivative
f
(
x
)
=
(
x
(
x
5
+
9
)
3
)
integral de e^{4θ}sin(5θ)
∫
e
4
θ
sin
(
5
θ
)
d
θ
(dN)/(dt)=kN
dN
dt
=
kN
integral de ln((2-3x)^4)
∫
ln
(
(
2
−
3
x
)
4
)
dx
derivada de \sqrt[3]{x^2}+5sqrt(x^3)
d
dx
(
3
√
x
2
+
5
√
x
3
)
área sqrt(6x-x^2),0,6
area
√
6
x
−
x
2
,
0
,
6
0.5y^{''}+10y^'+100y=150,y(0)=0,y^'(0)=0
0
.
5
y
′
′
+
1
0
y
′
+
1
0
0
y
=
1
5
0
,
y
(
0
)
=
0
,
y
′
(
0
)
=
0
derivative f(x)=(7x+2)/(8x-3)
derivative
f
(
x
)
=
7
x
+
2
8
x
−
3
derivative f(x)=(3x+4)/(3x-4)
derivative
f
(
x
)
=
3
x
+
4
3
x
−
4
derivative arcsin(4x+1)
derivative
arcsin
(
4
x
+
1
)
integral de (sin(2x))^3(cos(2x))^2
∫
(
sin
(
2
x
)
)
3
(
cos
(
2
x
)
)
2
dx
integral de (1+x^2)e^{-x}
∫
(
1
+
x
2
)
e
−
x
dx
serie de n=0 a infinity de n/(3n^3+1)
∑
n
=
0
∞
n
3
n
3
+
1
(dy)/(dx)=((x+y))/(3x+3y-4)
dy
dx
=
(
x
+
y
)
3
x
+
3
y
−
4
(2x+3y)dx+(3x+2y)dy=0
(
2
x
+
3
y
)
dx
+
(
3
x
+
2
y
)
dy
=
0
tangent sqrt(9-6x)
tangent
√
9
−
6
x
derivada de ln(x+y-ln(x-y))
d
dx
(
ln
(
x
+
y
)
−
ln
(
x
−
y
)
)
(\partial)/(\partial x)(cos(x)-xcos(y))
∂
∂
x
(
cos
(
x
)
−
x
cos
(
y
)
)
integral de 5t^2+e^{0.39t}+2
∫
5
t
2
+
e
0
.
3
9
t
+
2
dt
integral de t/(a+bt^2)
∫
t
a
+
bt
2
dt
integral de 9e^{-9x}
∫
9
e
−
9
x
dx
área sin^2(x),sin^3(x)
area
sin
2
(
x
)
,
sin
3
(
x
)
derivada de sin(1/x x^3)
d
dx
(
sin
(
1
x
)
x
3
)
tangent g(x)=ln(x^2),(e,2)
tangent
g
(
x
)
=
ln
(
x
2
)
,
(
e
,
2
)
integral de 0 a 8 de t+2t^3
∫
0
8
t
+
2
t
3
dt
inclinação (8.2)(-10.4)
slope
(
8
.
2
)
(
−
1
0
.
4
)
integral de (x+2)/(x^2-4x)
∫
x
+
2
x
2
−
4
x
dx
(\partial)/(\partial y)(x^3+y^2-yx^2-xy)
∂
∂
y
(
x
3
+
y
2
−
yx
2
−
xy
)
límite cuando x tiende a 1-de (x-1)|x-1|
lim
x
→
1
−
(
(
x
−
1
)
|
x
−
1
|
)
derivative f(x)=4-6x
derivative
f
(
x
)
=
4
−
6
x
integral de 2 a 2 de x^3
∫
2
2
x
3
dx
(dy)/(dt)=(te^t)/(ysqrt(1+y^2))
dy
dt
=
te
t
y
√
1
+
y
2
derivada de-16ax^2+a+1/3
d
dx
(
−
1
6
ax
2
+
a
+
1
3
)
integral de xcos(5)x^2
∫
x
cos
(
5
)
x
2
dx
integral de (4x)/(x^2+9)
∫
4
x
x
2
+
9
dx
derivative y=2xsin(x)+x^2e^x
derivative
y
=
2
x
sin
(
x
)
+
x
2
e
x
derivada de-2x^2-5x+2
d
dx
(
−
2
x
2
−
5
x
+
2
)
integral de 1/(sqrt(x^2-81))
∫
1
√
x
2
−
8
1
dx
y^'=-(3y)/t-2-t^{-4},y(1)=4
y
′
=
−
3
y
t
−
2
−
t
−
4
,
y
(
1
)
=
4
(\partial)/(\partial y)((x-3)/(y^2+1))
∂
∂
y
(
x
−
3
y
2
+
1
)
1
..
1175
1176
1177
1178
1179
..
2459