Atualize para o Profissional
Continuar para o site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Soluções
Calculadora de integrais (antiderivadas)
Calculadora de derivadas
Calculadora de álgebra
Calculadora de matrizes
Mais...
Gráficos
Gráfico de linha
Gráfico exponencial
Gráfico Quadrático
Gráfico senoidal
Mais...
Calculadoras
Calculadora de IMC
Calculadora de juros compostos
Calculadora de porcentagem
Calculadora de aceleração
Mais...
Geometria
Calculadora do Teorema de Pitágoras
Calculadora de área de círculo
Calculadora Triângulo Isósceles
Calculadora de Triângulos
Mais...
Ferramentas
Caderno
Grupos
Folhas de "cola"
Fichas de trabalho
Guias de estudo
Prática
Verifique a solução
pt
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Fazer upgrade
Problemas populares
Tópicos
Pre-Álgebra
Álgebra
Problemas de palavras
Functions & Graphing
Geometria
Trigonometria
Pré-cálculo
Cálculo
Estatística
Problemas de Cálculo populares
integral de sqrt(x^2)
∫
√
x
2
dx
derivative (x^6)/6
derivative
x
6
6
integral de 7e^x
∫
7
e
x
dx
tangent f(x)=4x^2+2x,\at x=-2
tangent
f
(
x
)
=
4
x
2
+
2
x
,
at
x
=
−
2
inversalaplace 1/(s^2+6s+8)
inverselaplace
1
s
2
+
6
s
+
8
derivada de (2-x^2/((2+x^2)^2))
d
dx
(
2
−
x
2
(
2
+
x
2
)
2
)
área-x^2+4x,x^2-2x
area
−
x
2
+
4
x
,
x
2
−
2
x
derivative f(x)=8e^xcos(x)
derivative
f
(
x
)
=
8
e
x
cos
(
x
)
inversalaplace s/((s^2+2s+2)(s^2+4))
inverselaplace
s
(
s
2
+
2
s
+
2
)
(
s
2
+
4
)
tangent f(x)=-x^2-4x+1,\at x=-4
tangent
f
(
x
)
=
−
x
2
−
4
x
+
1
,
at
x
=
−
4
derivative f(x)=ln(8x)
derivative
f
(
x
)
=
ln
(
8
x
)
integral de 8(x+1)
∫
8
(
x
+
1
)
dx
integral de ((x^5-2x^2))/((1+x^3)^{3/2)}
∫
(
x
5
−
2
x
2
)
(
1
+
x
3
)
3
2
dx
integral de \sqrt[6]{e^x}
∫
6
√
e
x
dx
derivative f(x)= 1/(x+1)
derivative
f
(
x
)
=
1
x
+
1
tangent f(x)=x^2+4,(-4,20)
tangent
f
(
x
)
=
x
2
+
4
,
(
−
4
,
2
0
)
d/(du)(2uv)
d
du
(
2
uv
)
derivada de ln|coth(5x|)
d
dx
(
ln
|
coth
(
5
x
)
|
)
y^'+e^yt=e^ysin(t)
y
′
+
e
y
t
=
e
y
sin
(
t
)
(\partial)/(\partial x)((ln(x))^2)
∂
∂
x
(
(
ln
(
x
)
)
2
)
(\partial)/(\partial x)(-2cos(4x))
∂
∂
x
(
−
2
cos
(
4
x
)
)
integral de x^3-x^2-2x
∫
x
3
−
x
2
−
2
xdx
integral de 0 a 1 de xe^{x^2}-e^x
∫
0
1
xe
x
2
−
e
x
dx
integral de 0 a pi de cos^4(x)
∫
0
π
cos
4
(
x
)
dx
(y^')/x =2x^2-y
y
′
x
=
2
x
2
−
y
derivative f(x)=-(4x)/((x-2)^3)
derivative
f
(
x
)
=
−
4
x
(
x
−
2
)
3
derivative g(t)=sqrt(5-x)
derivative
g
(
t
)
=
√
5
−
x
derivative f(x)= 1/(\sqrt[3]{2x-1)}
derivative
f
(
x
)
=
1
3
√
2
x
−
1
derivada de e^{-2x^3}
d
dx
(
e
−
2
x
3
)
integral de 6xsqrt(3x+1)
∫
6
x
√
3
x
+
1
dx
derivada de (x^2-9/(x-3))
d
dx
(
x
2
−
9
x
−
3
)
(\partial)/(\partial u(v))((e^v)/(u(v)+v^3))
∂
∂
u
(
v
)
(
e
v
u
(
v
)
+
v
3
)
integral de 1 a infinity de 5/(x^2+1)
∫
1
∞
5
x
2
+
1
dx
serie de n=2 a infinity de ((-1)^n)/n
∑
n
=
2
∞
(
−
1
)
n
n
integral de x^3e^{-2x}
∫
x
3
e
−
2
x
dx
d/(dj)(12i+15j)
d
dj
(
1
2
i
+
1
5
j
)
tangent f(x)=2x^2+5x-1,\at x=-3
tangent
f
(
x
)
=
2
x
2
+
5
x
−
1
,
at
x
=
−
3
derivada de (4x^2+5(5x+2)^4)
d
dx
(
(
4
x
2
+
5
)
(
5
x
+
2
)
4
)
d/(dt)((t-1)^2)
d
dt
(
(
t
−
1
)
2
)
derivada de 3^{cos(x})
d
dx
(
3
cos
(
x
)
)
integral de 5/(7+5x)
∫
5
7
+
5
x
dx
derivada de x^2+Ax+B
d
dx
(
x
2
+
Ax
+
B
)
integral de 2tan^3(x/4)
∫
2
tan
3
(
x
4
)
dx
límite cuando n tiende a infinity de (1+3/n)^{-n^2}
lim
n
→
∞
(
(
1
+
3
n
)
−
n
2
)
integral de 4xe^{4x}
∫
4
xe
4
x
dx
límite cuando x tiende a 0 de ((tan(x)))/x
lim
x
→
0
(
(
tan
(
x
)
)
x
)
d/(dt)(e^{2tsin(2t)})
d
dt
(
e
2
t
sin
(
2
t
)
)
derivada de (x^2/8-1/x)
d
dx
(
x
2
8
−
1
x
)
serie de n=5 a infinity de n
∑
n
=
5
∞
n
integral de (x^2+3x+1)/x
∫
x
2
+
3
x
+
1
x
dx
integral de 1/(3x^2+4)
∫
1
3
x
2
+
4
dx
tangent f(x)=-2x^4+10x^2,\at x=-1
tangent
f
(
x
)
=
−
2
x
4
+
1
0
x
2
,
at
x
=
−
1
derivada de 1-2/(x^2)
d
dx
(
1
−
2
x
2
)
integral de x^{100}+x^{99}
∫
x
1
0
0
+
x
9
9
dx
(x^2-y^2)dx+2xydy=0
(
x
2
−
y
2
)
dx
+
2
xydy
=
0
integral de 0 a 1 de t^3(3+t^4)^3
∫
0
1
t
3
(
3
+
t
4
)
3
dt
derivative f(x)=sqrt(12-x)
derivative
f
(
x
)
=
√
1
2
−
x
límite cuando t tiende a 0 de (sin(3t))/t
lim
t
→
0
(
sin
(
3
t
)
t
)
tangent y=3x+6cos(x),(pi/3 ,pi+3)
tangent
y
=
3
x
+
6
cos
(
x
)
,
(
π
3
,
π
+
3
)
tangent (x^2-1)/(x^2+x+1)
tangent
x
2
−
1
x
2
+
x
+
1
integral de e^x+1
∫
e
x
+
1
dx
integral de x(x^5+3)
∫
x
(
x
5
+
3
)
dx
derivative y=(x^2+8)^2-4x
derivative
y
=
(
x
2
+
8
)
2
−
4
x
(\partial)/(\partial x)(9csc(6x^4-9x+5))
∂
∂
x
(
9
csc
(
6
x
4
−
9
x
+
5
)
)
implicit (dy)/(dx),e^{x/y}=6x-y
implicit
dy
dx
,
e
x
y
=
6
x
−
y
derivada de 8/((1-2x^3))
d
dx
(
8
(
1
−
2
x
)
3
)
derivada de (x^5/(10))
d
dx
(
x
5
1
0
)
área y=6-x^2,y=8-3x
area
y
=
6
−
x
2
,
y
=
8
−
3
x
límite cuando x tiende a infinity de 4x+2
lim
x
→
∞
(
4
x
+
2
)
inversalaplace ((3s+1))/(s^2(s^2+4))
inverselaplace
(
3
s
+
1
)
s
2
(
s
2
+
4
)
integral de ln(x)+sin(pix)
∫
ln
(
x
)
+
sin
(
π
x
)
dx
inversalaplace (2s+3)/((s-7)^4)
inverselaplace
2
s
+
3
(
s
−
7
)
4
(3y^2+2x)dx+(6xy+16y^3)dy=0
(
3
y
2
+
2
x
)
dx
+
(
6
xy
+
1
6
y
3
)
dy
=
0
integral de sin(x)-5cos(x)
∫
sin
(
x
)
−
5
cos
(
x
)
dx
y^'-4y=4e^{6t}
y
′
−
4
y
=
4
e
6
t
integral de x/(sqrt(1-x^4))
∫
x
√
1
−
x
4
dx
derivative sin((pix)^7)
derivative
sin
(
(
π
x
)
7
)
(\partial)/(\partial x)(9x+2y)
∂
∂
x
(
9
x
+
2
y
)
integral de (x-1)^2(x+1)^2
∫
(
x
−
1
)
2
(
x
+
1
)
2
dx
integral de xsqrt(1+3x^2)
∫
x
√
1
+
3
x
2
dx
simplificar 4/(sqrt(1-x))
simplify
4
√
1
−
x
área y=8x-12,y=x^2,x=1
area
y
=
8
x
−
1
2
,
y
=
x
2
,
x
=
1
límite cuando x tiende a 0 de (tan(x))/(2x)
lim
x
→
0
(
tan
(
x
)
2
x
)
laplacetransformação t+29
laplacetransform
t
+
2
9
d/(dy)(ln(x)+y)
d
dy
(
ln
(
x
)
+
y
)
integral de-10e^{-x/2}
∫
−
1
0
e
−
x
2
dx
derivative sqrt(y)-7y
derivative
√
y
−
7
y
(\partial)/(\partial y)(3x^5tan(y)-2y^3)
∂
∂
y
(
3
x
5
tan
(
y
)
−
2
y
3
)
integral de 1.5 a 2 de cos((pix)/3)
∫
1
.
5
2
cos
(
π
x
3
)
dx
y^'+yt=6cos(5t)
y
′
+
yt
=
6
cos
(
5
t
)
taylor sin(9x)
taylor
sin
(
9
x
)
derivada de (a+b/(x^2)^3)
d
dx
(
(
a
+
b
x
2
)
3
)
derivative sin(x)ln(x)
derivative
sin
(
x
)
ln
(
x
)
derivative f(x)=2sin^5(sqrt(x))
derivative
f
(
x
)
=
2
sin
5
(
√
x
)
derivative xsin(x^2)
derivative
x
sin
(
x
2
)
y^{''}-4y^'+3y=-e^{-s},y(0)=0,y^'(0)=0
y
′
′
−
4
y
′
+
3
y
=
−
e
−
s
,
y
(
0
)
=
0
,
y
′
(
0
)
=
0
derivative arcsec(2x+2)
derivative
arcsec
(
2
x
+
2
)
integral de 8sin^4(x)cos^2(x)
∫
8
sin
4
(
x
)
cos
2
(
x
)
dx
integral de e^{(2x+1)}
∫
e
(
2
x
+
1
)
dx
xy^'-y-3=0
xy
′
−
y
−
3
=
0
1
..
1439
1440
1441
1442
1443
..
2459