Atualize para o Profissional
Continuar para o site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Soluções
Calculadora de integrais (antiderivadas)
Calculadora de derivadas
Calculadora de álgebra
Calculadora de matrizes
Mais...
Gráficos
Gráfico de linha
Gráfico exponencial
Gráfico Quadrático
Gráfico senoidal
Mais...
Calculadoras
Calculadora de IMC
Calculadora de juros compostos
Calculadora de porcentagem
Calculadora de aceleração
Mais...
Geometria
Calculadora do Teorema de Pitágoras
Calculadora de área de círculo
Calculadora Triângulo Isósceles
Calculadora de Triângulos
Mais...
Ferramentas
Caderno
Grupos
Folhas de "cola"
Fichas de trabalho
Guias de estudo
Prática
Verifique a solução
pt
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Fazer upgrade
Problemas populares
Tópicos
Pre-Álgebra
Álgebra
Problemas de palavras
Functions & Graphing
Geometria
Trigonometria
Pré-cálculo
Cálculo
Estatística
Problemas de Cálculo populares
inversalaplace (16)/((s-1)(s+1))
inverselaplace
1
6
(
s
−
1
)
(
s
+
1
)
inversalaplace 2/(s^2(s^2+25))
inverselaplace
2
s
2
(
s
2
+
2
5
)
(\partial)/(\partial x)(4ysin(2x))
∂
∂
x
(
4
y
sin
(
2
x
)
)
e^yy^'=e^y+7x
e
y
y
′
=
e
y
+
7
x
integral de xsin(2x^2)
∫
x
sin
(
2
x
2
)
dx
derivada de 5x^7sin(x)
d
dx
(
5
x
7
sin
(
x
)
)
derivative f(x)=(cot(x))/(sin(x))
derivative
f
(
x
)
=
cot
(
x
)
sin
(
x
)
derivative ln(sqrt(x+1))
derivative
ln
(
√
x
+
1
)
(dy)/(dt)=0.3y+26e^{0.3t}
dy
dt
=
0
.
3
y
+
2
6
e
0
.
3
t
derivative (8x^2+4x+8)/(sqrt(x))
derivative
8
x
2
+
4
x
+
8
√
x
(\partial)/(\partial x)(x^{sqrt(2)})
∂
∂
x
(
x
√
2
)
derivative f(x)=6ln(sec(x)+tan(x))
derivative
f
(
x
)
=
6
ln
(
sec
(
x
)
+
tan
(
x
)
)
integral de p(p+5)^7
∫
p
(
p
+
5
)
7
dp
integral de x/(x^2+6x+10)
∫
x
x
2
+
6
x
+
1
0
dx
derivada de (6x^2+6x+8/(sqrt(x)))
d
dx
(
6
x
2
+
6
x
+
8
√
x
)
y^'+6(tan(6x))y=-cos(6x)
y
′
+
6
(
tan
(
6
x
)
)
y
=
−
cos
(
6
x
)
integral de 2^x(1+5^x)
∫
2
x
(
1
+
5
x
)
dx
(dy)/(dt)=y^{1/3},y(0)=0
dy
dt
=
y
1
3
,
y
(
0
)
=
0
integral de (ln(x))^3
∫
(
ln
(
x
)
)
3
dx
tangent f(x)=x^2+3x-1,\at x=1
tangent
f
(
x
)
=
x
2
+
3
x
−
1
,
at
x
=
1
y^{''}-4=0
y
′
′
−
4
=
0
derivada de (2x+3(3x-2))
d
dx
(
(
2
x
+
3
)
(
3
x
−
2
)
)
6y^'-y=9x^{-3x},y(0)=4
6
y
′
−
y
=
9
x
−
3
x
,
y
(
0
)
=
4
taylor (2x+4)/(3x+7),\at-2
taylor
2
x
+
4
3
x
+
7
,
at
−
2
derivada de (sin(xy)/(e^x-y^2))
d
dx
(
sin
(
xy
)
e
x
−
y
2
)
derivative 2xy^2
derivative
2
xy
2
serie de n=0 a infinity de n*(2/3)^n
∑
n
=
0
∞
n
·
(
2
3
)
n
derivative 4e^{2x^2-4}
derivative
4
e
2
x
2
−
4
tangent-3/2 x^2+9x+9
tangent
−
3
2
x
2
+
9
x
+
9
integral de (12x^3-4x-2)
∫
(
1
2
x
3
−
4
x
−
2
)
dx
integral de 1/(1/v)
∫
1
1
v
dv
inversalaplace (e^{-2s})/(s^2+1)
inverselaplace
e
−
2
s
s
2
+
1
implicit 5x^2+y^2=9
implicit
5
x
2
+
y
2
=
9
integral de x^3sqrt(x+1)
∫
x
3
√
x
+
1
dx
y^{''}-2y^'-24y=0
y
′
′
−
2
y
′
−
2
4
y
=
0
integral de x^3(x^4+3)^3
∫
x
3
(
x
4
+
3
)
3
dx
integral de 4^{(8-2x)}
∫
4
(
8
−
2
x
)
dx
integral de ((4x^4-6x^2)/x)
∫
(
4
x
4
−
6
x
2
x
)
dx
derivative y=6e^x+8/(\sqrt[3]{x)}
derivative
y
=
6
e
x
+
8
3
√
x
integral de (x^2ln(2x))
∫
(
x
2
ln
(
2
x
)
)
dx
taylor e^{x^2}-1
taylor
e
x
2
−
1
integral de (x/2)^4
∫
(
x
2
)
4
dx
y^'= y/x
y
′
=
y
x
(\partial)/(\partial y)(1/(ln(10)(x-y)))
∂
∂
y
(
1
ln
(
1
0
)
(
x
−
y
)
)
(dy)/(dt)+3y+e^t+3=0
dy
dt
+
3
y
+
e
t
+
3
=
0
dx-x^2dy=0
dx
−
x
2
dy
=
0
derivative 2/(1-8x)
derivative
2
1
−
8
x
integral de e^{-sx}*sin(x)
∫
e
−
sx
·
sin
(
x
)
dx
integral de (6sec^2(x))
∫
(
6
sec
2
(
x
)
)
dx
límite cuando x tiende a 0+de 9/x-9/(|x|)
lim
x
→
0
+
(
9
x
−
9
|
x
|
)
límite cuando x tiende a-2 de 3-x
lim
x
→
−
2
(
3
−
x
)
serie de n=0 a infinity de (10^n)/(9^n)
∑
n
=
0
∞
1
0
n
9
n
x^3+3y-x(dy)/(dx)=0
x
3
+
3
y
−
x
dy
dx
=
0
y^{''}+36y=2tan(6x)
y
′
′
+
3
6
y
=
2
tan
(
6
x
)
derivada de e^{arctan(x})
d
dx
(
e
arctan
(
x
)
)
(\partial)/(\partial x)(4x^3-3x^2y+5x)
∂
∂
x
(
4
x
3
−
3
x
2
y
+
5
x
)
derivative sqrt(x)-1
derivative
√
x
−
1
integral de 1/(x(y+1))
∫
1
x
(
y
+
1
)
dy
integral de 4tan(x)sec^3(x)
∫
4
tan
(
x
)
sec
3
(
x
)
dx
taylor 9+x*e^{-7x}
taylor
9
+
x
·
e
−
7
x
límite cuando x tiende a 10 de (x^2-99)/(x-10)
lim
x
→
1
0
(
x
2
−
9
9
x
−
1
0
)
integral de (2x^5-3x^4+4x^2)
∫
(
2
x
5
−
3
x
4
+
4
x
2
)
dx
integral de (sec(x))/(cos(x))
∫
sec
(
x
)
cos
(
x
)
dx
(\partial)/(\partial x)(49-7x^2-y^2)
∂
∂
x
(
4
9
−
7
x
2
−
y
2
)
integral de (x^3)/((1+x^4)^{1/3)}
∫
x
3
(
1
+
x
4
)
1
3
dx
integral de 12x+4y
∫
1
2
x
+
4
ydy
límite cuando x tiende a 2 de asqrt(x+7)+b
lim
x
→
2
(
a
√
x
+
7
+
b
)
(\partial)/(\partial x)(ln(y+2))
∂
∂
x
(
ln
(
y
+
2
)
)
(e^{x^3})^'
(
e
x
3
)
′
integral de 4xcos(x^2)
∫
4
x
cos
(
x
2
)
dx
(\partial)/(\partial t)(-2/t)
∂
∂
t
(
−
2
t
)
integral de (x+6)/(x^2+4)
∫
x
+
6
x
2
+
4
dx
integral de 8xcos(4x^2+3)
∫
8
x
cos
(
4
x
2
+
3
)
dx
derivada de 1/3 e^x
d
dx
(
1
3
e
x
)
límite cuando h tiende a 0 de (cosh(x))/h
lim
h
→
0
(
cosh
(
x
)
h
)
integral de 9/(x^2+16)
∫
9
x
2
+
1
6
dx
integral de (1-tan^2(x))/(sec^2(x))
∫
1
−
tan
2
(
x
)
sec
2
(
x
)
dx
derivative (x^2)/(3+sqrt(x))
derivative
x
2
3
+
√
x
taylor ln(1+x),3
taylor
ln
(
1
+
x
)
,
3
integral de 3/(x^2)+2/(x^3)
∫
3
x
2
+
2
x
3
dx
x(dy)/(dx)=y(ln(y)-ln(x))
x
dy
dx
=
y
(
ln
(
y
)
−
ln
(
x
)
)
derivada de (ln(x-1)/(ln^2(x)))
d
dx
(
ln
(
x
)
−
1
ln
2
(
x
)
)
área (12)/(1+x^4),6x^2
area
1
2
1
+
x
4
,
6
x
2
derivative 2x^x
derivative
2
x
x
serie de n=0 a infinity de (2^2)/(3^2)
∑
n
=
0
∞
2
2
3
2
(\partial)/(\partial s)(-3s^2t^2)
∂
∂
s
(
−
3
s
2
t
2
)
(dy)/(dx)=(y^3)/(3x+1),y(0)=-1
dy
dx
=
y
3
3
x
+
1
,
y
(
0
)
=
−
1
derivative 2/(t^3)
derivative
2
t
3
y^'+3y=xe^{-2x}
y
′
+
3
y
=
xe
−
2
x
(\partial)/(\partial y)(-sin(x)sin(y))
∂
∂
y
(
−
sin
(
x
)
sin
(
y
)
)
serie de n=0 a infinity de ((x^n))/n
∑
n
=
0
∞
(
x
n
)
n
(dy)/(dt)=-\sqrt[3]{y},y(0)=27
dy
dt
=
−
3
√
y
,
y
(
0
)
=
2
7
(dy)/(yln(k/y))=cdx
dy
y
ln
(
k
y
)
=
cdx
derivative (2x+1)^{10}
derivative
(
2
x
+
1
)
1
0
integral de 0 a infinity de e^{-2x^2}
∫
0
∞
e
−
2
x
2
dx
integral de sec^2(4xta)n^34x
∫
sec
2
(
4
xta
)
n
3
4
xdx
laplacetransformação 5e^{2t}
laplacetransform
5
e
2
t
derivada de 1/(2sqrt(1+x))
d
dx
(
1
2
√
1
+
x
)
(\partial)/(\partial x)(x^2-2xy+2y^2+x-2y)
∂
∂
x
(
x
2
−
2
xy
+
2
y
2
+
x
−
2
y
)
derivada de cos(pi*x)
d
dx
(
cos
(
π
·
x
)
)
1
..
1493
1494
1495
1496
1497
..
2459