Atualize para o Profissional
Continuar para o site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Soluções
Calculadora de integrais (antiderivadas)
Calculadora de derivadas
Calculadora de álgebra
Calculadora de matrizes
Mais...
Gráficos
Gráfico de linha
Gráfico exponencial
Gráfico Quadrático
Gráfico senoidal
Mais...
Calculadoras
Calculadora de IMC
Calculadora de juros compostos
Calculadora de porcentagem
Calculadora de aceleração
Mais...
Geometria
Calculadora do Teorema de Pitágoras
Calculadora de área de círculo
Calculadora Triângulo Isósceles
Calculadora de Triângulos
Mais...
Ferramentas
Caderno
Grupos
Folhas de "cola"
Fichas de trabalho
Guias de estudo
Prática
Verifique a solução
pt
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Fazer upgrade
Problemas populares
Tópicos
Pre-Álgebra
Álgebra
Problemas de palavras
Functions & Graphing
Geometria
Trigonometria
Pré-cálculo
Cálculo
Estatística
Problemas de Cálculo populares
integral de-3 a 3 de (9-x^2)^2
∫
−
3
3
(
9
−
x
2
)
2
dx
integral de (1-x^2)/(x(x^2+1))
∫
1
−
x
2
x
(
x
2
+
1
)
dx
integral de e^x+x^2
∫
e
x
+
x
2
dx
límite cuando x tiende a 0 de 0
lim
x
→
0
(
0
)
derivada de 3x^7
d
dx
(
3
x
7
)
integral de 4 a infinity de xe^{-x}
∫
4
∞
xe
−
x
dx
derivative f(r)=sqrt(r)+\sqrt[7]{r}
derivative
f
(
r
)
=
√
r
+
7
√
r
integral de (2xe^{-3x})
∫
(
2
xe
−
3
x
)
dx
límite cuando x tiende a 0 de (3tan(x))/x
lim
x
→
0
(
3
tan
(
x
)
x
)
y^'+2sin(2x)y=2sin(2x),y(pi/2)=3
y
′
+
2
sin
(
2
x
)
y
=
2
sin
(
2
x
)
,
y
(
π
2
)
=
3
(dx)/(dy)=xy
dx
dy
=
xy
derivada de-csc(x-sin(x))
d
dx
(
−
csc
(
x
)
−
sin
(
x
)
)
integral de 5sin^3(9x)
∫
5
sin
3
(
9
x
)
dx
(\partial)/(\partial y)(4xy-2e^{2x+y})
∂
∂
y
(
4
xy
−
2
e
2
x
+
y
)
límite cuando h tiende a 0 de (-4)^2+2(-4)
lim
h
→
0
(
(
−
4
)
2
+
2
(
−
4
)
)
integral de (x^2)/(sqrt(21+4x-x^2))
∫
x
2
√
2
1
+
4
x
−
x
2
dx
inversalaplace ((s+9))/((s^2+6s+34))
inverselaplace
(
s
+
9
)
(
s
2
+
6
s
+
3
4
)
integral de x^2sqrt(x^3+19)
∫
x
2
√
x
3
+
1
9
dx
(dy)/(dx)-2/x y= 3/(x^2)y^4
dy
dx
−
2
x
y
=
3
x
2
y
4
integral de 1 a 2 de 13sqrt(4x^2-3)
∫
1
2
1
3
√
4
x
2
−
3
dx
derivada de-5x+2
d
dx
(
−
5
x
+
2
)
(\partial)/(\partial y)(2x-y^2)
∂
∂
y
(
2
x
−
y
2
)
derivative-5/(4y^3)
derivative
−
5
4
y
3
derivada de cos(x^{-5})
d
dx
(
cos
(
x
−
5
)
)
integral de (2sin(θ)-csc(θ))^2
∫
(
2
sin
(
θ
)
−
csc
(
θ
)
)
2
d
θ
derivative y=(4x-5)2
derivative
y
=
(
4
x
−
5
)
2
(x+9/x)^'
(
x
+
9
x
)
′
integral de 7cot^4(5t)
∫
7
cot
4
(
5
t
)
dt
integral de-1 a 1 de 1-x^4
∫
−
1
1
1
−
x
4
dx
(\partial)/(\partial y)(y(-2x-y+1))
∂
∂
y
(
y
(
−
2
x
−
y
+
1
)
)
integral de pi/2 a pi de-cos(x)
∫
π
2
π
−
cos
(
x
)
dx
integral de x^2e^{-x}
∫
x
2
e
−
x
dx
derivative h(t)=3ln(t^6)
derivative
h
(
t
)
=
3
ln
(
t
6
)
integral de 24+cos(x)
∫
2
4
+
cos
(
x
)
dx
tangent (-4x)/(x^2+1)(-1.2)
tangent
−
4
x
x
2
+
1
(
−
1
.
2
)
d/(d{x)}({x}^2+{x}{z}-{y}+{y}^2+{y}{z}+3{z}^2)
d
d
x
(
x
2
+
x
z
−
y
+
y
2
+
y
z
+
3
z
2
)
integral de x*e^{x/4}
∫
x
·
e
x
4
dx
(\partial)/(\partial x)(4sqrt(y/x))
∂
∂
x
(
4
√
y
x
)
d/(dy)(xy)
d
dy
(
xy
)
derivative y=(x)
derivative
y
=
(
x
)
área y=4x-16,y^2=4x+4
area
y
=
4
x
−
1
6
,
y
2
=
4
x
+
4
derivative y=arctan(sqrt(7x^2-1))
derivative
y
=
arctan
(
√
7
x
2
−
1
)
integral de x(cos^2(x))
∫
x
(
cos
2
(
x
)
)
dx
derivative y=x^2-2x-8
derivative
y
=
x
2
−
2
x
−
8
integral de (x^2+y)
∫
(
x
2
+
y
)
dx
d/(dy)(1/(sqrt(y^2+1)))
d
dy
(
1
√
y
2
+
1
)
y^'+2xy=2x^3
y
′
+
2
xy
=
2
x
3
derivada de (x^2-3/(x+2))
d
dx
(
x
2
−
3
x
+
2
)
integral de 0 a 4 de 4x
∫
0
4
4
xdx
integral de (sin(x))/((1+cos(x))^3)
∫
sin
(
x
)
(
1
+
cos
(
x
)
)
3
dx
x^{''}=0
x
′
′
=
0
integral de cos^5(x)sqrt(sin(x))
∫
cos
5
(
x
)
√
sin
(
x
)
dx
derivada de xln(x+2)
d
dx
(
x
ln
(
x
+
2
)
)
y^{''}+16y=1+2sin(4x)
y
′
′
+
1
6
y
=
1
+
2
sin
(
4
x
)
tangent (3x)/(4-x^2),\at x=1
tangent
3
x
4
−
x
2
,
at
x
=
1
integral de b a 1 de 2ln(x)
∫
b
1
2
ln
(
x
)
dx
integral de (x^2+2)^{3/2}
∫
(
x
2
+
2
)
3
2
dx
derivada de (x-sqrt(x)/(x^{1/5)})
d
dx
(
x
−
√
x
x
1
5
)
integral de (x^3)/(sqrt((4-x^2)^3))
∫
x
3
√
(
4
−
x
2
)
3
dx
y^'=(x+y-1)^2-1
y
′
=
(
x
+
y
−
1
)
2
−
1
(\partial)/(\partial x)(t/(x-1))
∂
∂
x
(
t
x
−
1
)
integral de 2x-2y
∫
2
x
−
2
ydx
taylor 1/(1-z^2),0
taylor
1
1
−
z
2
,
0
(\partial)/(\partial x)(1/2 ln(x))
∂
∂
x
(
1
2
ln
(
x
)
)
(x^2+1)y^'+8x(y-1)=0,y(0)=3
(
x
2
+
1
)
y
′
+
8
x
(
y
−
1
)
=
0
,
y
(
0
)
=
3
(\partial)/(\partial x)(4x^2-4xy+xyz)
∂
∂
x
(
4
x
2
−
4
xy
+
xyz
)
integral de (tan(x))/(1+cos(x))
∫
tan
(
x
)
1
+
cos
(
x
)
dx
área 6-x^2,x^2-2,[0,3]
area
6
−
x
2
,
x
2
−
2
,
[
0
,
3
]
integral de (ln(y))/(ln(y))
∫
ln
(
y
)
ln
(
y
)
dy
e^{t^2}y^'+(t+ty^2)=0,y(0)=1
e
t
2
y
′
+
(
t
+
ty
2
)
=
0
,
y
(
0
)
=
1
tangent (64x)/(x^2+64)
tangent
6
4
x
x
2
+
6
4
(\partial)/(\partial y)(2x^3-x^2y)
∂
∂
y
(
2
x
3
−
x
2
y
)
integral de (t^2-1)(4+3t)
∫
(
t
2
−
1
)
(
4
+
3
t
)
dt
tangent f(x)=x^4,\at x=1
tangent
f
(
x
)
=
x
4
,
at
x
=
1
tangent y= 6/(sqrt(x)),(25, 6/5)
tangent
y
=
6
√
x
,
(
2
5
,
6
5
)
derivative (x^2)/(7+sqrt(x))
derivative
x
2
7
+
√
x
límite cuando x tiende a infinity de ((sqrt(2x^2+1)))/(3x-5)
lim
x
→
∞
(
(
√
2
x
2
+
1
)
3
x
−
5
)
y^{''}-2y^'=2t
y
′
′
−
2
y
′
=
2
t
límite cuando x tiende a 3+de (x^2+x)/(x-3)
lim
x
→
3
+
(
x
2
+
x
x
−
3
)
laplacetransformação cos(t+pi/4)
laplacetransform
cos
(
t
+
π
4
)
integral de (3y+7)
∫
(
3
y
+
7
)
dy
inversalaplace 5/(s+2)
inverselaplace
5
s
+
2
derivative x^{2x}
derivative
x
2
x
x^2(dy)/(dx)-2xy=4y^4,y(1)= 1/3
x
2
dy
dx
−
2
xy
=
4
y
4
,
y
(
1
)
=
1
3
xy^'+y^2+y=0
xy
′
+
y
2
+
y
=
0
derivative f(x)=3x^2+2x
derivative
f
(
x
)
=
3
x
2
+
2
x
derivative f(x)=sin^2(x)+cos^2(x)
derivative
f
(
x
)
=
sin
2
(
x
)
+
cos
2
(
x
)
integral de 1 a 2 de 2x
∫
1
2
2
xdx
d/(dt)(st^2)
d
dt
(
st
2
)
tangent-4x^2-3x+2,\at x=-1
tangent
−
4
x
2
−
3
x
+
2
,
at
x
=
−
1
integral de 1/(5x^4)
∫
1
5
x
4
dx
derivada de (sin(x)/(sqrt(1+cos(x))))
d
dx
(
sin
(
x
)
√
1
+
cos
(
x
)
)
integral de 22x
∫
2
2
xdx
(dx)/(dt)=(e^t-e^{-t})/(3+x)
dx
dt
=
e
t
−
e
−
t
3
+
x
derivative y= 1/2 e^{2x}
derivative
y
=
1
2
e
2
x
(\partial)/(\partial x)(2xyz+3/4 xy+z)
∂
∂
x
(
2
xyz
+
3
4
xy
+
z
)
(dy)/(dt)+0.4ty=5t,y(0)=6
dy
dt
+
0
.
4
ty
=
5
t
,
y
(
0
)
=
6
tangent y=x^3-11x,(2,-14)
tangent
y
=
x
3
−
1
1
x
,
(
2
,
−
1
4
)
(\partial)/(\partial x)(arctan(a)x^3)
∂
∂
x
(
arctan
(
a
)
x
3
)
integral de (-t)/((t+1)-sqrt(t+1))
∫
−
t
(
t
+
1
)
−
√
t
+
1
dt
1
..
1496
1497
1498
1499
1500
..
2459