Atualize para o Profissional
Continuar para o site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Soluções
Calculadora de integrais (antiderivadas)
Calculadora de derivadas
Calculadora de álgebra
Calculadora de matrizes
Mais...
Gráficos
Gráfico de linha
Gráfico exponencial
Gráfico Quadrático
Gráfico senoidal
Mais...
Calculadoras
Calculadora de IMC
Calculadora de juros compostos
Calculadora de porcentagem
Calculadora de aceleração
Mais...
Geometria
Calculadora do Teorema de Pitágoras
Calculadora de área de círculo
Calculadora Triângulo Isósceles
Calculadora de Triângulos
Mais...
Ferramentas
Caderno
Grupos
Folhas de "cola"
Fichas de trabalho
Guias de estudo
Prática
Verifique a solução
pt
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Fazer upgrade
Problemas populares
Tópicos
Pre-Álgebra
Álgebra
Problemas de palavras
Functions & Graphing
Geometria
Trigonometria
Pré-cálculo
Cálculo
Estatística
Problemas de Trigonometria populares
provar ((cot(x)))/((csc(x)))=cos(x)
prove
(
cot
(
x
)
)
(
csc
(
x
)
)
=
cos
(
x
)
provar ((sec^2(t)))/(sec^2(t)-1)=csc^2(t)
prove
(
sec
2
(
t
)
)
sec
2
(
t
)
−
1
=
csc
2
(
t
)
provar sin^2(x)=cos(2x)+2
prove
sin
2
(
x
)
=
cos
(
2
x
)
+
2
provar 1+cos^2(x)=2-sin^2(x)
prove
1
+
cos
2
(
x
)
=
2
−
sin
2
(
x
)
provar sin^2(x)=cos(2x)-2
prove
sin
2
(
x
)
=
cos
(
2
x
)
−
2
provar (tan(θ)cot(θ))/(cos(θ))=sec(θ)
prove
tan
(
θ
)
cot
(
θ
)
cos
(
θ
)
=
sec
(
θ
)
provar 2(cos(θ-1))^2=cos^4(θ)-sin^4(θ)
prove
2
(
cos
(
θ
−
1
)
)
2
=
cos
4
(
θ
)
−
sin
4
(
θ
)
provar cos(x)= 15/17
prove
cos
(
x
)
=
1
5
1
7
provar csc(A)-sin(A)=(cos(A))(cot(A))
prove
csc
(
A
)
−
sin
(
A
)
=
(
cos
(
A
)
)
(
cot
(
A
)
)
provar (cos^2(x))/(cos^2(x))=1
prove
cos
2
(
x
)
cos
2
(
x
)
=
1
provar (1-sec(x))/(csc(x))=cos(x)(cot(x))
prove
1
−
sec
(
x
)
csc
(
x
)
=
cos
(
x
)
(
cot
(
x
)
)
provar csc(x)tan(x)sec(x)=sec^2(x)
prove
csc
(
x
)
tan
(
x
)
sec
(
x
)
=
sec
2
(
x
)
provar tan(x)sec^4(x)=(sin(x))/(cos^5(x))
prove
tan
(
x
)
sec
4
(
x
)
=
sin
(
x
)
cos
5
(
x
)
provar csc(x)+cot(x)sec(x)-1=tan(x)
prove
csc
(
x
)
+
cot
(
x
)
sec
(
x
)
−
1
=
tan
(
x
)
provar (3csc(x)-3sin(x))/(tan(x)-cot(x))=3cos^3(x)
prove
3
csc
(
x
)
−
3
sin
(
x
)
tan
(
x
)
−
cot
(
x
)
=
3
cos
3
(
x
)
provar 9cos(x)+6sin(x)=10
prove
9
cos
(
x
◦
)
+
6
sin
(
x
◦
)
=
1
0
provar (tan^2(A))/(sec^2(A))=sin^2(A)
prove
tan
2
(
A
)
sec
2
(
A
)
=
sin
2
(
A
)
provar 5cos^2(x)-2cos(x)-3-sin^2(x)=0
prove
5
cos
2
(
x
)
−
2
cos
(
x
)
−
3
−
sin
2
(
x
)
=
0
provar cos^4(a)+1-sin^4(a)=2cos^2(a)
prove
cos
4
(
a
)
+
1
−
sin
4
(
a
)
=
2
cos
2
(
a
)
provar 3-4cos^2(x)=(2sin(x)+1)(2sin(x)-1)
prove
3
−
4
cos
2
(
x
)
=
(
2
sin
(
x
)
+
1
)
(
2
sin
(
x
)
−
1
)
provar csc^2(θ)=(1/(sin(θ)))^2
prove
csc
2
(
θ
)
=
(
1
sin
(
θ
)
)
2
provar (1+tan(x))/(1+1/(tan(x)))=tan(x)
prove
1
+
tan
(
x
)
1
+
1
tan
(
x
)
=
tan
(
x
)
provar cos(2θ)= 1/(sec(2θ))
prove
cos
(
2
θ
)
=
1
sec
(
2
θ
)
provar (cos(3x)-cos(x))=-2sin(2x)sin(x)
prove
(
cos
(
3
x
)
−
cos
(
x
)
)
=
−
2
sin
(
2
x
)
sin
(
x
)
provar sec(pi/2-y)=csc(y)
prove
sec
(
π
2
−
y
)
=
csc
(
y
)
provar cos(2x-pi/2)=cos(pi/2-2x)
prove
cos
(
2
x
−
π
2
)
=
cos
(
π
2
−
2
x
)
provar sin(pi/2-x)cot(pi/2+x)=-sin(x)
prove
sin
(
π
2
−
x
)
cot
(
π
2
+
x
)
=
−
sin
(
x
)
provar cos(x)*csc(x)*tan(x)=1
prove
cos
(
x
)
·
csc
(
x
)
·
tan
(
x
)
=
1
provar cos^2(x) 1/(cos^2(x))=1
prove
cos
2
(
x
)
1
cos
2
(
x
)
=
1
provar (sin((4pi)/3))=-(sqrt(3))/2
prove
(
sin
(
4
π
3
)
)
=
−
√
3
2
provar sec(x)-sin^2(x)=cos(x)
prove
sec
(
x
)
−
sin
2
(
x
)
=
cos
(
x
)
provar cot^2(x)=csc^2(x)(1-sin^2(x))
prove
cot
2
(
x
)
=
csc
2
(
x
)
(
1
−
sin
2
(
x
)
)
provar (cos(2θ))/(-sin^2(θ))=cos^2(θ)
prove
cos
(
2
θ
)
−
sin
2
(
θ
)
=
cos
2
(
θ
)
provar sin(x)+cot(x)(cos(x))=csc(x)
prove
sin
(
x
)
+
cot
(
x
)
(
cos
(
x
)
)
=
csc
(
x
)
provar 1/(csc(x)-1)=(sin(x))/1
prove
1
csc
(
x
)
−
1
=
sin
(
x
)
1
provar sec(θ)cos(θ)csc(θ)=cot(θ)
prove
sec
(
θ
)
cos
(
θ
)
csc
(
θ
)
=
cot
(
θ
)
provar csc^2(x)(1-cos^2(x))=tan(420)
prove
csc
2
(
x
)
(
1
−
cos
2
(
x
)
)
=
tan
(
4
2
0
◦
)
provar cos(θ+30)-sin(θ+60)=-sin(θ)
prove
cos
(
θ
+
3
0
◦
)
−
sin
(
θ
+
6
0
◦
)
=
−
sin
(
θ
)
provar tan(a)*cot(a)=sin^2(a)+cos^2(a)
prove
tan
(
a
)
·
cot
(
a
)
=
sin
2
(
a
)
+
cos
2
(
a
)
provar tan(x)+(cos(x))/(1-sin(x))=sec(x)
prove
tan
(
x
)
+
cos
(
x
)
1
−
sin
(
x
)
=
sec
(
x
)
provar sin(x)cos(x)=tan(x)
prove
sin
(
x
)
cos
(
x
)
=
tan
(
x
)
provar cot((15pi)/8)=cot((7pi)/8)
prove
cot
(
1
5
π
8
)
=
cot
(
7
π
8
)
provar sin^4(x)=(sin^2(x))^2
prove
sin
4
(
x
)
=
(
sin
2
(
x
)
)
2
provar sin(2x)-cos(2x)= 1/2
prove
sin
(
2
x
)
−
cos
(
2
x
)
=
1
2
provar cos^{(2)}(θ)(1+tan^{(2)}(θ))=1
prove
cos
(
2
)
(
θ
)
(
1
+
tan
(
2
)
(
θ
)
)
=
1
provar 1-2sin^2(y)+sin^4(y)=cos^4(y)
prove
1
−
2
sin
2
(
y
)
+
sin
4
(
y
)
=
cos
4
(
y
)
provar (sin(x)+cos(x))^2-2sin(x)cos(x)=1
prove
(
sin
(
x
)
+
cos
(
x
)
)
2
−
2
sin
(
x
)
cos
(
x
)
=
1
provar (1-sin(3a))(sin(3a)+1)=cos^2(3a)
prove
(
1
−
sin
(
3
a
)
)
(
sin
(
3
a
)
+
1
)
=
cos
2
(
3
a
)
provar (sin(x))/(1+cos(2x))=tan(x)
prove
sin
(
x
)
1
+
cos
(
2
x
)
=
tan
(
x
)
provar sec(t)(csc(t)(tan(t)+cot(t)))=sec^2(t)+csc^2(t)
prove
sec
(
t
)
(
csc
(
t
)
(
tan
(
t
)
+
cot
(
t
)
)
)
=
sec
2
(
t
)
+
csc
2
(
t
)
provar (1+sin(x))^2+cos^2(x)=2+2sin(x)
prove
(
1
+
sin
(
x
)
)
2
+
cos
2
(
x
)
=
2
+
2
sin
(
x
)
provar cot(60)=(cos(60))/(sin(60))
prove
cot
(
6
0
◦
)
=
cos
(
6
0
◦
)
sin
(
6
0
◦
)
provar tan(-x)tan(pi/2-x)=-1
prove
tan
(
−
x
)
tan
(
π
2
−
x
)
=
−
1
provar tan(pi-θ)=-tan(x)
prove
tan
(
π
−
θ
)
=
−
tan
(
x
)
provar cot(θ)(sin(θ)+tan(θ))=cos(θ)+1
prove
cot
(
θ
)
(
sin
(
θ
)
+
tan
(
θ
)
)
=
cos
(
θ
)
+
1
provar (2-sin^2(x))csc^2(x)=cot^2(x)
prove
(
2
−
sin
2
(
x
)
)
csc
2
(
x
)
=
cot
2
(
x
)
provar 1/(tan(A))+tan(A)= 2/(sin(2A))
prove
1
tan
(
A
)
+
tan
(
A
)
=
2
sin
(
2
A
)
provar 1+sin(θ)=cos(θ)
prove
1
+
sin
(
θ
)
=
cos
(
θ
)
provar 1+((tan^2(x)))/(1+sec(x))=sec(x)
prove
1
+
(
tan
2
(
x
)
)
1
+
sec
(
x
)
=
sec
(
x
)
provar csc^2(x)*cos^2(x)=cot^2(x)
prove
csc
2
(
x
)
·
cos
2
(
x
)
=
cot
2
(
x
)
provar 1/(sec^3(x)cos^4(x))=sec(x)
prove
1
sec
3
(
x
)
cos
4
(
x
)
=
sec
(
x
)
provar csc^2(θ)+1=cot^2(θ)
prove
csc
2
(
θ
)
+
1
=
cot
2
(
θ
)
provar 1+tan^2(B)=sec^2(B)
prove
1
+
tan
2
(
B
)
=
sec
2
(
B
)
provar cos^2(7θ)-sin^2(7θ)=cos(14θ)
prove
cos
2
(
7
θ
)
−
sin
2
(
7
θ
)
=
cos
(
1
4
θ
)
provar sin^4(x)-(3/(4*sin^2(x)))+1=1
prove
sin
4
(
x
)
−
(
3
4
·
sin
2
(
x
)
)
+
1
=
1
provar arccot(x)=tan(x)
prove
arccot
(
x
)
=
tan
(
x
)
provar cot(θ)+tan(θ)=sec(θ)+csc(θ)
prove
cot
(
θ
)
+
tan
(
θ
)
=
sec
(
θ
)
+
csc
(
θ
)
provar 2sin(θ)+sin(2θ)=0
prove
2
sin
(
θ
)
+
sin
(
2
θ
)
=
0
provar cos^2(x)+cos(x)-1+sin^2(x)=cos(x)
prove
cos
2
(
x
)
+
cos
(
x
)
−
1
+
sin
2
(
x
)
=
cos
(
x
)
provar (2sin(x)cos(x))/(cos(x))=2
prove
2
sin
(
x
)
cos
(
x
)
cos
(
x
)
=
2
provar tan(x-(3pi)/2)=-cot(x)
prove
tan
(
x
−
3
π
2
)
=
−
cot
(
x
)
provar sin(θ)(cos^2(θ))/(sin(θ))=csc(θ)
prove
sin
(
θ
)
cos
2
(
θ
)
sin
(
θ
)
=
csc
(
θ
)
provar (tan^2(a)+1)/(sec(a))=sec(a)
prove
tan
2
(
a
)
+
1
sec
(
a
)
=
sec
(
a
)
provar 1/(tan(β)+cot(β))=sin(β)cos(β)
prove
1
tan
(
β
)
+
cot
(
β
)
=
sin
(
β
)
cos
(
β
)
provar cos(300)=1-2sin^2(150)
prove
cos
(
3
0
0
◦
)
=
1
−
2
sin
2
(
1
5
0
◦
)
provar csc^2(x)+3cot^2(x)-5=4(cot(x)-1)
prove
csc
2
(
x
)
+
3
cot
2
(
x
)
−
5
=
4
(
cot
(
x
)
−
1
)
provar (3)((cos(2z))^2)/2 =(3cos(4z))/4
prove
(
3
)
(
cos
(
2
z
)
)
2
2
=
3
cos
(
4
z
)
4
provar-2sin^2(x)+cos(x)+1=0
prove
−
2
sin
2
(
x
)
+
cos
(
x
)
+
1
=
0
provar (2cot(u))/(csc^2(u)-2)=tan(2u)
prove
2
cot
(
u
)
csc
2
(
u
)
−
2
=
tan
(
2
u
)
provar csc(2x)+cot(2x)=(1+cos(2x))/(sin(2x))
prove
csc
(
2
x
)
+
cot
(
2
x
)
=
1
+
cos
(
2
x
)
sin
(
2
x
)
provar 1-2sin^2(t)=2cos^2(t)-1
prove
1
−
2
sin
2
(
t
)
=
2
cos
2
(
t
)
−
1
provar 1/(cos^2(θ))=sec^2(θ)
prove
1
cos
2
(
θ
)
=
sec
2
(
θ
)
provar-cos(2t)sin(2t)+sin(2t)cos(2t)+0=0
prove
−
cos
(
2
t
)
sin
(
2
t
)
+
sin
(
2
t
)
cos
(
2
t
)
+
0
=
0
provar (tan(θ)sin(θ))/(sec(θ)-1)=1+cos(θ)
prove
tan
(
θ
)
sin
(
θ
)
sec
(
θ
)
−
1
=
1
+
cos
(
θ
)
provar 1-2sin^2(x)=-1+cos^2(x)
prove
1
−
2
sin
2
(
x
)
=
−
1
+
cos
2
(
x
)
provar (sin(x)sin(x))/(cos(x))=cos(x)
prove
sin
(
x
)
sin
(
x
)
cos
(
x
)
=
cos
(
x
)
provar (cos(x))/5 = 1/5*cos(x)
prove
cos
(
x
)
5
=
1
5
·
cos
(
x
)
provar (1+tan(x))/(sec(x))=cos(x)+sin(x)
prove
1
+
tan
(
x
)
sec
(
x
)
=
cos
(
x
)
+
sin
(
x
)
provar (sin(4x))/4 =(sin(x)cos(x))/2
prove
sin
(
4
x
)
4
=
sin
(
x
)
cos
(
x
)
2
provar (sin(x)tan(x))/(cos(x)+1)=sec(x)-1
prove
sin
(
x
)
tan
(
x
)
cos
(
x
)
+
1
=
sec
(
x
)
−
1
provar sin(a+b)-sin(a-b)=2sin(a)sin(b)
prove
sin
(
a
+
b
)
−
sin
(
a
−
b
)
=
2
sin
(
a
)
sin
(
b
)
provar sec(x)+1=(tan^2(x))/(sec(x)-1)
prove
sec
(
x
)
+
1
=
tan
2
(
x
)
sec
(
x
)
−
1
provar (sin(x))/(1-cos^2(x))=cos(x)
prove
sin
(
x
)
1
−
cos
2
(
x
)
=
cos
(
x
)
provar sin^2(x)-cos^2(x)=2(sin^2(x))-1
prove
sin
2
(
x
)
−
cos
2
(
x
)
=
2
(
sin
2
(
x
)
)
−
1
provar sin^2(3x)=9sin^3(x)cos^3(x)
prove
sin
2
(
3
x
)
=
9
sin
3
(
x
)
cos
3
(
x
)
provar sin^2(x)+cos(-2x)=cos^2(x)
prove
sin
2
(
x
)
+
cos
(
−
2
x
)
=
cos
2
(
x
)
provar sin(pi/2+a)=cos(a)
prove
sin
(
π
2
+
a
)
=
cos
(
a
)
provar 2sin^2(x)-cos(x)-2=0
prove
2
sin
2
(
x
)
−
cos
(
x
)
−
2
=
0
provar csc(t)-sin(t)=cot(t)*cos(t)
prove
csc
(
t
)
−
sin
(
t
)
=
cot
(
t
)
·
cos
(
t
)
provar (tan(θ)+6)/(sec(θ))=6cos(θ)+sin(θ)
prove
tan
(
θ
)
+
6
sec
(
θ
)
=
6
cos
(
θ
)
+
sin
(
θ
)
1
..
215
216
217
218
219
..
345