integral xe^{x^2}
|
integral\:xe^{x^{2}}
|
punto médio(-7,5)(7,3)
|
punto\:médio(-7,5)(7,3)
|
tangent f(x)=x^3
|
tangent\:f(x)=x^{3}
|
derivative 2sin(x)
|
derivative\:2\sin(x)
|
inclinação y=2x-4
|
inclinação\:y=2x-4
|
cartesian θ= pi/3
|
cartesian\:θ=\frac{π}{3}
|
derivative f(x)=x^2+x
|
derivative\:f(x)=x^{2}+x
|
x=-3
|
x=-3
|
tangent y=8cos(3x)-2sin(4x)
|
tangent\:y=8\cos(3x)-2\sin(4x)
|
derivative-x/2
|
derivative\:-\frac{x}{2}
|
polar(5,-5)
|
polar(5,-5)
|
derivative f(x)=(x^2-1)^2
|
derivative\:f(x)=(x^{2}-1)^{2}
|
polar(3sqrt(3),3)
|
polar(3\sqrt{3},3)
|
punto médio(1,2)(1,-5)
|
punto\:médio(1,2)(1,-5)
|
cartesian(-4,pi)
|
cartesian(-4,π)
|
derivative 4x^3
|
derivative\:4x^{3}
|
punto médio(-4,2)(8,5)
|
punto\:médio(-4,2)(8,5)
|
cartesian(2,(11pi)/6)
|
cartesian(2,\frac{11π}{6})
|
inclinação 5y+2x=12
|
inclinação\:5y+2x=12
|
derivative x^2cos(x)
|
derivative\:x^{2}\cos(x)
|
cartesian(4,0)
|
cartesian(4,0)
|
derivative f(x)=2xsin(3x)
|
derivative\:f(x)=2x\sin(3x)
|
derivative y=(2x+1)/(2x-1)
|
derivative\:y=\frac{2x+1}{2x-1}
|
derivative f(x)=(sin(x)-cos(x))/(sin(x)+cos(x))
|
derivative\:f(x)=\frac{\sin(x)-\cos(x)}{\sin(x)+\cos(x)}
|
inclinação 3x-45-15y=0
|
inclinação\:3x-45-15y=0
|
derivative y=(x^2+4x+3)/(sqrt(x))
|
derivative\:y=\frac{x^{2}+4x+3}{\sqrt{x}}
|
derivative f(x)=(1-sec(x))/(tan(x))
|
derivative\:f(x)=\frac{1-\sec(x)}{\tan(x)}
|
x=-2
|
x=-2
|
perpendicular y=2x-5
|
perpendicular\:y=2x-5
|
derivative f(x)=xe^{-x^2}
|
derivative\:f(x)=xe^{-x^{2}}
|
derivative y=tan(x)
|
derivative\:y=\tan(x)
|
polar(-sqrt(3),1)
|
polar(-\sqrt{3},1)
|
punto médio(-6,-3)(2,7)
|
punto\:médio(-6,-3)(2,7)
|
inclinação y+3=-4(x+7)
|
inclinação\:y+3=-4(x+7)
|
derivative g(x)=((3x-2))/((x^2+2))
|
derivative\:g(x)=\frac{(3x-2)}{(x^{2}+2)}
|
reta(4,2)(-3,1)
|
reta(4,2)(-3,1)
|
cartesian(6,-(2pi)/3)
|
cartesian(6,-\frac{2π}{3})
|
derivative x^2+1
|
derivative\:x^{2}+1
|
derivative f(x)=(sqrt(1+sin^2(x)))/(x^3)
|
derivative\:f(x)=\frac{\sqrt{1+\sin^{2}(x)}}{x^{3}}
|
derivative x-3
|
derivative\:x-3
|
derivative y=x^{ln(x)}
|
derivative\:y=x^{\ln(x)}
|
polar(-6,6)
|
polar(-6,6)
|
derivative f(x)=e^{1/x}
|
derivative\:f(x)=e^{\frac{1}{x}}
|
punto médio(7,-12)(-5,-15)
|
punto\:médio(7,-12)(-5,-15)
|
cartesian(-3,-pi/6)
|
cartesian(-3,-\frac{π}{6})
|
tangent f(x)=-3x^2-6x,\at x=-1
|
tangent\:f(x)=-3x^{2}-6x,\at\:x=-1
|
x=-5
|
x=-5
|
punto médio(-2,-7)(7,4)
|
punto\:médio(-2,-7)(7,4)
|
punto médio(3,17)(-14,-8)
|
punto\:médio(3,17)(-14,-8)
|
reta θ=(4pi)/3
|
reta\:θ=\frac{4π}{3}
|
reta(3, 1/4)(3/2 ,7)
|
reta(3,\frac{1}{4})(\frac{3}{2},7)
|
derivative y=ln(sqrt(x))
|
derivative\:y=\ln(\sqrt{x})
|
derivative y=ln(x^2)
|
derivative\:y=\ln(x^{2})
|
derivative f(x)=sqrt(x+9)
|
derivative\:f(x)=\sqrt{x+9}
|
derivative y=x^3
|
derivative\:y=x^{3}
|
polar(-(9sqrt(3))/2 , 9/2)
|
polar(-\frac{9\sqrt{3}}{2},\frac{9}{2})
|
derivative xsqrt(1-x^2)
|
derivative\:x\sqrt{1-x^{2}}
|
polar(-4,4sqrt(3))
|
polar(-4,4\sqrt{3})
|
inclinação y=2x+1
|
inclinação\:y=2x+1
|
punto médio(3.2,2.5)(1.6,-4.5)
|
punto\:médio(3.2,2.5)(1.6,-4.5)
|
derivative y=x^{sin(x)}
|
derivative\:y=x^{\sin(x)}
|
polar(2,2sqrt(3))
|
polar(2,2\sqrt{3})
|
derivative f(x)=x^3-x-2
|
derivative\:f(x)=x^{3}-x-2
|
paralela 5x-y=4,\at(2,0)
|
paralela\:5x-y=4,\at(2,0)
|
punto médio(-1,4)(3,2)
|
punto\:médio(-1,4)(3,2)
|
punto médio(-7/3 , 3/4)(5/3 ,-9/4)
|
punto\:médio(-\frac{7}{3},\frac{3}{4})(\frac{5}{3},-\frac{9}{4})
|
r=4
|
r=4
|
derivative 2e^x
|
derivative\:2e^{x}
|
derivative x^3ln(x)
|
derivative\:x^{3}\ln(x)
|
cartesian(-4,-pi/3)
|
cartesian(-4,-\frac{π}{3})
|
derivative y= 1/(x^2)
|
derivative\:y=\frac{1}{x^{2}}
|
inclinação 12x+6y=18
|
inclinação\:12x+6y=18
|
inclinação y=3x-4
|
inclinação\:y=3x-4
|
derivative-x
|
derivative\:-x
|
inclinação ln(x+1)+3
|
inclinação\:\ln(x+1)+3
|
θ= pi/3
|
θ=\frac{π}{3}
|
inclinação y=3x+4
|
inclinação\:y=3x+4
|
punto médio(-5,-4)(5,-3)
|
punto\:médio(-5,-4)(5,-3)
|
derivative y=(2x)/(1-x^2)
|
derivative\:y=\frac{2x}{1-x^{2}}
|
distância(7,-1)(-8,-9)
|
distância(7,-1)(-8,-9)
|
derivative 1/8 x^{2/3}(9x^2-8x-16)
|
derivative\:\frac{1}{8}x^{\frac{2}{3}}(9x^{2}-8x-16)
|
derivative-cos
|
derivative\:-\cos
|
derivative-1/(x^2)
|
derivative\:-\frac{1}{x^{2}}
|
derivative f(x)=sqrt(x^2+1)
|
derivative\:f(x)=\sqrt{x^{2}+1}
|
derivative x^2-24x-12
|
derivative\:x^{2}-24x-12
|
derivative f(x)=x^2+3x
|
derivative\:f(x)=x^{2}+3x
|
derivative f(x)=(x+1)/(x-1)
|
derivative\:f(x)=\frac{x+1}{x-1}
|
integral e^x
|
integral\:e^{x}
|
inclinação y=3x+2
|
inclinação\:y=3x+2
|
derivative y=x^2-5x
|
derivative\:y=x^{2}-5x
|
inclinação 3x+4y=8
|
inclinação\:3x+4y=8
|
inclinação(-5,2),(4,-7)
|
inclinação(-5,2),(4,-7)
|
polar(3,3sqrt(3))
|
polar(3,3\sqrt{3})
|
derivative f(x)=2
|
derivative\:f(x)=2
|
derivative y=xln(x)
|
derivative\:y=x\ln(x)
|
punto médio(2,-6)(-8,5)
|
punto\:médio(2,-6)(-8,5)
|
inclinaçãointercept 5x-6y=7
|
inclinaçãointercept\:5x-6y=7
|
inclinaçãointercept 2x+3y=6
|
inclinaçãointercept\:2x+3y=6
|
x=5
|
x=5
|
f(3)=2
|
f(3)=2
|