inclinação-2
|
inclinação\:-2
|
inclinação x=4.2
|
inclinação\:x=4.2
|
θ=(5pi)/6
|
θ=\frac{5π}{6}
|
tangent 3arcsin(x),(1/2 , pi/2)
|
tangent\:3\arcsin(x),(\frac{1}{2},\frac{π}{2})
|
inclinação y=6x+3
|
inclinação\:y=6x+3
|
derivative y=2x+1
|
derivative\:y=2x+1
|
derivative y=x^3e^x
|
derivative\:y=x^{3}e^{x}
|
inclinação 3x+4y=12
|
inclinação\:3x+4y=12
|
derivative f(x)=sin(ln(x))
|
derivative\:f(x)=\sin(\ln(x))
|
polar(-3,3sqrt(3))
|
polar(-3,3\sqrt{3})
|
punto médio(-1,8)(7,3)
|
punto\:médio(-1,8)(7,3)
|
distância(4,0)(-3,4)
|
distância(4,0)(-3,4)
|
integral sin(2x)
|
integral\:\sin(2x)
|
polar(4,-4)
|
polar(4,-4)
|
derivative f(x)=tan^2(x)
|
derivative\:f(x)=\tan^{2}(x)
|
polar(-9,9)
|
polar(-9,9)
|
tangent f(x)=sqrt(x),\at(1,1)
|
tangent\:f(x)=\sqrt{x},\at(1,1)
|
inclinação 5(y+2)=4(x-3)
|
inclinação\:5(y+2)=4(x-3)
|
distância(1+sqrt(24),-3)(1,-2)
|
distância(1+\sqrt{24},-3)(1,-2)
|
z=4-2i
|
z=4-2i
|
cartesian(4, pi/6)
|
cartesian(4,\frac{π}{6})
|
punto médio(-2,3)(6,5)
|
punto\:médio(-2,3)(6,5)
|
normal sqrt(1-tanh(5x)),\at x=0
|
normal\:\sqrt{1-\tanh(5x)},\at\:x=0
|
reta(20,10)(2,5)
|
reta(20,10)(2,5)
|
polar(3,-3)
|
polar(3,-3)
|
derivative f(x)=sqrt(5x^6-12)
|
derivative\:f(x)=\sqrt{5x^{6}-12}
|
derivative y=e^{2x}
|
derivative\:y=e^{2x}
|
derivative f(x)=3x+2
|
derivative\:f(x)=3x+2
|
integral 1/(sqrt(x))
|
integral\:\frac{1}{\sqrt{x}}
|
f=sin(1)
|
f=\sin(1)
|
polar(sqrt(3),1)
|
polar(\sqrt{3},1)
|
f=0
|
f=0
|
inclinação 3/4 x^4-4/3 x^3+5/2
|
inclinação\:\frac{3}{4}x^{4}-\frac{4}{3}x^{3}+\frac{5}{2}
|
derivative y=sqrt(4-x^2)
|
derivative\:y=\sqrt{4-x^{2}}
|
reta(-2,0)(0,2)
|
reta(-2,0)(0,2)
|
f=1
|
f=1
|
polar(1,3)
|
polar(1,3)
|
derivative-6/(x^4)
|
derivative\:-\frac{6}{x^{4}}
|
derivative(x+1)^2(x-4)^3
|
derivative(x+1)^{2}(x-4)^{3}
|
distância(-2,3)(4,-1)
|
distância(-2,3)(4,-1)
|
punto médio(-1,-1)(1,2)
|
punto\:médio(-1,-1)(1,2)
|
derivative f(x)=cos(80)
|
derivative\:f(x)=\cos(80)
|
tangent f(x)=sqrt(x^2+18x+86)
|
tangent\:f(x)=\sqrt{x^{2}+18x+86}
|
f=-2
|
f=-2
|
derivative f(x)=-4x^3-cos(x)+2x
|
derivative\:f(x)=-4x^{3}-\cos(x)+2x
|
inclinação y= 4/5 x-3
|
inclinação\:y=\frac{4}{5}x-3
|
tangent y=x^3
|
tangent\:y=x^{3}
|
derivative e^xsin(x)
|
derivative\:e^{x}\sin(x)
|
cartesian(-4,(3pi)/4)
|
cartesian(-4,\frac{3π}{4})
|
derivative f(x)= 1/(sqrt(x))
|
derivative\:f(x)=\frac{1}{\sqrt{x}}
|
inclinação y=-1/2 x+3
|
inclinação\:y=-\frac{1}{2}x+3
|
inclinação y=5x-1
|
inclinação\:y=5x-1
|
tangent f(x)=ln(x)log_{2}(x),\at x=2
|
tangent\:f(x)=\ln(x)\log_{2}(x),\at\:x=2
|
tangent f(x)= 1/(x^2)
|
tangent\:f(x)=\frac{1}{x^{2}}
|
derivative f(x)=x^4
|
derivative\:f(x)=x^{4}
|
derivative x^{11}arccot(x)
|
derivative\:x^{11}\arccot(x)
|
derivative 4e^x
|
derivative\:4e^{x}
|
derivative e^{3x}cos(2x)
|
derivative\:e^{3x}\cos(2x)
|
punto médio(2,-14)(-3,0)
|
punto\:médio(2,-14)(-3,0)
|
inclinação y=3x+5
|
inclinação\:y=3x+5
|
punto médio(2,4)(2,-7)
|
punto\:médio(2,4)(2,-7)
|
inclinação 2x+3y=6
|
inclinação\:2x+3y=6
|
punto médio(3,5)(2,2)
|
punto\:médio(3,5)(2,2)
|
perpendicular y=2x+3
|
perpendicular\:y=2x+3
|
punto médio(-4,4)(5,-1)
|
punto\:médio(-4,4)(5,-1)
|
inclinaçãointercept 3x-2y=-16
|
inclinaçãointercept\:3x-2y=-16
|
distância(8,0)(4,-4)
|
distância(8,0)(4,-4)
|
derivative xe^x
|
derivative\:xe^{x}
|
derivative f(x)=x^2+1
|
derivative\:f(x)=x^{2}+1
|
derivative y=ln(ln(x^{32}))
|
derivative\:y=\ln(\ln(x^{32}))
|
inclinaçãointercept 4x-3y=9
|
inclinaçãointercept\:4x-3y=9
|
tangent y=x^2-3x-10,\at x=5.5
|
tangent\:y=x^{2}-3x-10,\at\:x=5.5
|
reta(-1,)(,0)(,4)
|
reta(-1,)(,0)(,4)
|
derivative y=e^{x^2}
|
derivative\:y=e^{x^{2}}
|
derivative f(x)=-9/x ,\at x=6
|
derivative\:f(x)=-\frac{9}{x},\at\:x=6
|
punto médio(10,6),(-4,8)
|
punto\:médio(10,6),(-4,8)
|
polar(-3,-3sqrt(3))
|
polar(-3,-3\sqrt{3})
|
derivative f(x)=sqrt(x)
|
derivative\:f(x)=\sqrt{x}
|
derivative y= 1/x
|
derivative\:y=\frac{1}{x}
|
inclinação(2,3)(4,9)
|
inclinação(2,3)(4,9)
|
polar x^2+y^2=16
|
polar\:x^{2}+y^{2}=16
|
derivative 5x
|
derivative\:5x
|
inclinaçãointercept 3x+4y=12
|
inclinaçãointercept\:3x+4y=12
|
perpendicular y=-2x+3
|
perpendicular\:y=-2x+3
|
inclinação 8x+2y=6
|
inclinação\:8x+2y=6
|
tangent f(x)= x/(x-1),\at x=0
|
tangent\:f(x)=\frac{x}{x-1},\at\:x=0
|
punto médio(-12,-7)(-8,-4)
|
punto\:médio(-12,-7)(-8,-4)
|
integral arctan(x)
|
integral\:\arctan(x)
|
reta(-2,3)(5,8)
|
reta(-2,3)(5,8)
|
inclinação x=-3
|
inclinação\:x=-3
|
punto médio(15,-3)(5,12)
|
punto\:médio(15,-3)(5,12)
|
derivative f(x)=x^2-2x
|
derivative\:f(x)=x^{2}-2x
|
derivative e^x+2e^{2x}
|
derivative\:e^{x}+2e^{2x}
|
punto médio(-6,8)(6,-7)
|
punto\:médio(-6,8)(6,-7)
|
T=2pisqrt(L/g)
|
T=2π\sqrt{\frac{L}{g}}
|
inclinação y=6
|
inclinação\:y=6
|
polar(4,0)
|
polar(4,0)
|
polar(-5,5)
|
polar(-5,5)
|
f=5
|
f=5
|
derivative y= x/(x^2+1)
|
derivative\:y=\frac{x}{x^{2}+1}
|