AI explanations are generated using OpenAI technology. AI generated content may present inaccurate or offensive content that does not represent Symbolab's view.
Verify your Answer
Subscribe to verify your answer
Subscribe
Save to Notebook!
Sign in to save notes
Sign in
substituição trigonométrica ∫50x3√1−25x2dx
Verify
Save
Solution
225(−13(1−25x2)32+15(1−25x2)52)+C
Show Steps
Hide Steps
Solution steps
Solve by:
One step at a time
∫50x3√1−25x2dx
Remover a constante: ∫a·f(x)dx=a·∫f(x)dx
=50·∫x3√1−25x2dx
Aplicar integração por substituição trigonométrica:∫1625sin3(u)cos2(u)du
=50·∫1625sin3(u)cos2(u)du
Remover a constante: ∫a·f(x)dx=a·∫f(x)dx
=50·1625·∫sin3(u)cos2(u)du
Reeecreva usando identidades trigonométricas
=50·1625·∫(1−cos2(u))sin(u)cos2(u)du
Aplicar integração por substituição:∫−v2(1−v2)dv
=50·1625·∫−v2(1−v2)dv
Expandir −v2(1−v2):−v2+v4
=50·1625·∫−v2+v4dv
Aplicar a regra da soma: ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx